-
Oliver Sander authored
[[Imported from SVN: r7367]]
Oliver Sander authored[[Imported from SVN: r7367]]
targetspacetest.cc 12.91 KiB
#include <config.h>
#include <dune/gfe/unitvector.hh>
#include <dune/gfe/realtuple.hh>
#include <dune/gfe/rotation.hh>
#include "valuefactory.hh"
using Dune::FieldVector;
/** \file
\brief Unit tests for the UnitVector class
*/
using namespace Dune;
const double eps = 1e-4;
template <class TargetSpace>
double energy(const TargetSpace& a, const TargetSpace& b)
{
return TargetSpace::distance(a,b) * TargetSpace::distance(a,b);
}
template <class TargetSpace, int dim>
double energy(const TargetSpace& a, const FieldVector<double,dim>& b)
{
return TargetSpace::distance(a,b) * TargetSpace::distance(a,b);
}
template <class TargetSpace, int dim>
double energy(const FieldVector<double,dim>& a, const FieldVector<double,dim>& b)
{
return TargetSpace::distance(a,b) * TargetSpace::distance(a,b);
}
/** \brief Compute the Riemannian Hessian of the squared distance function in global coordinates
The formula for the Riemannian Hessian has been taken from Absil, Mahony, Sepulchre:
'Optimization algorithms on matrix manifolds', page 107
*/
template <class TargetSpace, int worldDim>
FieldMatrix<double,worldDim,worldDim> getSecondDerivativeOfSecondArgumentFD(const TargetSpace& a, const TargetSpace& b)
{
const size_t spaceDim = TargetSpace::dim;
// finite-difference approximation
FieldMatrix<double,spaceDim,spaceDim> d2d2_fd(0);
FieldMatrix<double,spaceDim,worldDim> B = b.orthonormalFrame();
for (size_t i=0; i<spaceDim; i++) {
for (size_t j=0; j<spaceDim; j++) {
FieldVector<double,worldDim> epsXi = B[i]; epsXi *= eps;
FieldVector<double,worldDim> epsEta = B[j]; epsEta *= eps;
FieldVector<double,worldDim> minusEpsXi = epsXi; minusEpsXi *= -1;
FieldVector<double,worldDim> minusEpsEta = epsEta; minusEpsEta *= -1;
double forwardValue = energy(a,TargetSpace::exp(b,epsXi+epsEta)) - energy(a, TargetSpace::exp(b,epsXi)) - energy(a,TargetSpace::exp(b,epsEta));
double centerValue = energy(a,b) - energy(a,b) - energy(a,b);
double backwardValue = energy(a,TargetSpace::exp(b,minusEpsXi + minusEpsEta)) - energy(a, TargetSpace::exp(b,minusEpsXi)) - energy(a,TargetSpace::exp(b,minusEpsEta));
d2d2_fd[i][j] = 0.5 * (forwardValue - 2*centerValue + backwardValue) / (eps*eps);
}
}
//B.invert();
FieldMatrix<double,worldDim,spaceDim> BT;
for (int i=0; i<worldDim; i++)
for (size_t j=0; j<spaceDim; j++)
BT[i][j] = B[j][i];
FieldMatrix<double,spaceDim,worldDim> ret1;
FMatrixHelp::multMatrix(d2d2_fd,B,ret1);
FieldMatrix<double,worldDim,worldDim> ret2;
FMatrixHelp::multMatrix(BT,ret1,ret2);
return ret2;
}
template <class TargetSpace, int worldDim>
void testOrthonormalFrame(const TargetSpace& a)
{
const size_t spaceDim = TargetSpace::dim;
FieldMatrix<double,spaceDim,worldDim> B = a.orthonormalFrame();
for (size_t i=0; i<spaceDim; i++)
for (size_t j=0; j<spaceDim; j++)
assert( std::fabs(B[i]*B[j] - (i==j)) < 1e-10 );
}
template <class TargetSpace, int dim>
void testDerivativeOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
{
///////////////////////////////////////////////////////////////////
// Test derivative with respect to second argument
///////////////////////////////////////////////////////////////////
typename TargetSpace::EmbeddedTangentVector d2 = TargetSpace::derivativeOfDistanceSquaredWRTSecondArgument(a, b);
// finite-difference approximation
typename TargetSpace::EmbeddedTangentVector d2_fd;
for (size_t i=0; i<dim; i++) {
FieldVector<double,dim> bPlus = b.globalCoordinates();
FieldVector<double,dim> bMinus = b.globalCoordinates();
bPlus[i] += eps;
bMinus[i] -= eps;
d2_fd[i] = (energy(a,bPlus) - energy(a,bMinus)) / (2*eps);
}
if ( (d2 - d2_fd).infinity_norm() > 100*eps ) {
std::cout << className(a) << ": Analytical gradient does not match fd approximation." << std::endl;
std::cout << "d2 Analytical: " << d2 << std::endl;
std::cout << "d2 FD : " << d2_fd << std::endl;
}
}
template <class TargetSpace, int dim>
void testHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
{
///////////////////////////////////////////////////////////////////
// Test second derivative with respect to second argument
///////////////////////////////////////////////////////////////////
FieldMatrix<double,dim,dim> d2d2 = TargetSpace::secondDerivativeOfDistanceSquaredWRTSecondArgument(a, b);
// finite-difference approximation
FieldMatrix<double,dim,dim> d2d2_fd = getSecondDerivativeOfSecondArgumentFD<TargetSpace,dim>(a,b);
FieldMatrix<double,dim,dim> d2d2_diff = d2d2;
d2d2_diff -= d2d2_fd;
if ( (d2d2_diff).infinity_norm() > 100*eps) {
std::cout << className(a) << ": Analytical second derivative does not match fd approximation." << std::endl;
std::cout << "d2d2 Analytical:" << std::endl << d2d2 << std::endl;
std::cout << "d2d2 FD :" << std::endl << d2d2_fd << std::endl;
}
}
template <class TargetSpace, int dim>
void testMixedDerivativesOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
{
//////////////////////////////////////////////////////////////////////////////
// Test mixed second derivative with respect to first and second argument
//////////////////////////////////////////////////////////////////////////////
FieldMatrix<double,dim,dim> d1d2 = TargetSpace::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(a, b);
// finite-difference approximation
FieldMatrix<double,dim,dim> d1d2_fd;
for (size_t i=0; i<dim; i++) {
for (size_t j=0; j<dim; j++) {
FieldVector<double,dim> aPlus = a.globalCoordinates();
FieldVector<double,dim> aMinus = a.globalCoordinates();
aPlus[i] += eps;
aMinus[i] -= eps;
FieldVector<double,dim> bPlus = b.globalCoordinates();
FieldVector<double,dim> bMinus = b.globalCoordinates();
bPlus[j] += eps;
bMinus[j] -= eps;
d1d2_fd[i][j] = (energy<TargetSpace>(aPlus,bPlus) + energy<TargetSpace>(aMinus,bMinus)
- energy<TargetSpace>(aPlus,bMinus) - energy<TargetSpace>(aMinus,bPlus)) / (4*eps*eps);
}
}
FieldMatrix<double,dim,dim> d1d2_diff = d1d2;
d1d2_diff -= d1d2_fd;
if ( (d1d2_diff).infinity_norm() > 100*eps ) {
std::cout << className(a) << ": Analytical mixed second derivative does not match fd approximation." << std::endl;
std::cout << "d1d2 Analytical:" << std::endl << d1d2 << std::endl;
std::cout << "d1d2 FD :" << std::endl << d1d2_fd << std::endl;
}
}
template <class TargetSpace, int dim>
void testDerivativeOfHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
{
/////////////////////////////////////////////////////////////////////////////////////////////
// Test mixed third derivative with respect to first (once) and second (twice) argument
/////////////////////////////////////////////////////////////////////////////////////////////
Tensor3<double,dim,dim,dim> d2d2d2 = TargetSpace::thirdDerivativeOfDistanceSquaredWRTSecondArgument(a, b);
Tensor3<double,dim,dim,dim> d2d2d2_fd;
for (size_t i=0; i<dim; i++) {
FieldVector<double,dim> bPlus = b.globalCoordinates();
FieldVector<double,dim> bMinus = b.globalCoordinates();
bPlus[i] += eps;
bMinus[i] -= eps;
FieldMatrix<double,dim,dim> hPlus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,dim>(a,TargetSpace(bPlus));
FieldMatrix<double,dim,dim> hMinus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,dim>(a,TargetSpace(bMinus));
d2d2d2_fd[i] = hPlus;
d2d2d2_fd[i] -= hMinus;
d2d2d2_fd[i] /= 2*eps;
}
if ( (d2d2d2 - d2d2d2_fd).infinity_norm() > 100*eps) {
std::cout << className(a) << ": Analytical third derivative does not match fd approximation." << std::endl;
std::cout << "d2d2d2 Analytical:" << std::endl << d2d2d2 << std::endl;
std::cout << "d2d2d2 FD :" << std::endl << d2d2d2_fd << std::endl;
}
}
template <class TargetSpace, int dim>
void testMixedDerivativeOfHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
{
/////////////////////////////////////////////////////////////////////////////////////////////
// Test mixed third derivative with respect to first (once) and second (twice) argument
/////////////////////////////////////////////////////////////////////////////////////////////
Tensor3<double,dim,dim,dim> d1d2d2 = TargetSpace::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(a, b);
Tensor3<double,dim,dim,dim> d1d2d2_fd;
for (size_t i=0; i<dim; i++) {
FieldVector<double,dim> aPlus = a.globalCoordinates();
FieldVector<double,dim> aMinus = a.globalCoordinates();
aPlus[i] += eps;
aMinus[i] -= eps;
FieldMatrix<double,dim,dim> hPlus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,dim>(TargetSpace(aPlus),b);
FieldMatrix<double,dim,dim> hMinus = getSecondDerivativeOfSecondArgumentFD<TargetSpace,dim>(TargetSpace(aMinus),b);
d1d2d2_fd[i] = hPlus;
d1d2d2_fd[i] -= hMinus;
d1d2d2_fd[i] /= 2*eps;
}
if ( (d1d2d2 - d1d2d2_fd).infinity_norm() > 100*eps ) {
std::cout << className(a) << ": Analytical mixed third derivative does not match fd approximation." << std::endl;
std::cout << "d1d2d2 Analytical:" << std::endl << d1d2d2 << std::endl;
std::cout << "d1d2d2 FD :" << std::endl << d1d2d2_fd << std::endl;
}
}
template <class TargetSpace, int dim>
void testDerivativesOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
{
///////////////////////////////////////////////////////////////////
// Test derivative with respect to second argument
///////////////////////////////////////////////////////////////////
testDerivativeOfSquaredDistance<TargetSpace,dim>(a,b);
///////////////////////////////////////////////////////////////////
// Test second derivative with respect to second argument
///////////////////////////////////////////////////////////////////
testHessianOfSquaredDistance<TargetSpace,dim>(a,b);
//////////////////////////////////////////////////////////////////////////////
// Test mixed second derivative with respect to first and second argument
//////////////////////////////////////////////////////////////////////////////
testMixedDerivativesOfSquaredDistance<TargetSpace,dim>(a,b);
/////////////////////////////////////////////////////////////////////////////////////////////
// Test third derivative with respect to second argument
/////////////////////////////////////////////////////////////////////////////////////////////
testDerivativeOfHessianOfSquaredDistance<TargetSpace,dim>(a,b);
/////////////////////////////////////////////////////////////////////////////////////////////
// Test mixed third derivative with respect to first (once) and second (twice) argument
/////////////////////////////////////////////////////////////////////////////////////////////
testMixedDerivativeOfHessianOfSquaredDistance<TargetSpace,dim>(a,b);
}
template <int N>
void testUnitVector()
{
std::vector<UnitVector<N> > testPoints;
ValueFactory<UnitVector<N> >::get(testPoints);
int nTestPoints = testPoints.size();
// Set up elements of S^{N-1}
for (int i=0; i<nTestPoints; i++) {
testOrthonormalFrame<UnitVector<N>, N>(testPoints[i]);
for (int j=0; j<nTestPoints; j++) {
if (UnitVector<N>::distance(testPoints[i],testPoints[j]) > M_PI*0.98)
continue;
testDerivativesOfSquaredDistance<UnitVector<N>, N>(testPoints[i], testPoints[j]);
}
}
}
void testRotation3d()
{
std::vector<Rotation<3,double> > testPoints;
ValueFactory<Rotation<3,double> >::get(testPoints);
int nTestPoints = testPoints.size();
// Set up elements of SO(3)
for (int i=0; i<nTestPoints; i++) {
testOrthonormalFrame<Rotation<3,double>, 4>(testPoints[i]);
for (int j=0; j<nTestPoints; j++) {
testDerivativesOfSquaredDistance<Rotation<3,double>, 4>(testPoints[i], testPoints[j]);
}
}
}
int main() try
{
testUnitVector<2>();
testUnitVector<3>();
testUnitVector<4>();
testRotation3d();
} catch (Exception e) {
std::cout << e << std::endl;
}