Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
00fa65b6
Commit
00fa65b6
authored
13 years ago
by
Oliver Sander
Committed by
sander@FU-BERLIN.DE
13 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Copy some tests for the Rotation class from fdcheck.cc to rotationtest.cc
[[Imported from SVN: r8194]]
parent
8124cc9b
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
test/fdcheck.cc
+0
-215
0 additions, 215 deletions
test/fdcheck.cc
test/rotationtest.cc
+218
-0
218 additions, 0 deletions
test/rotationtest.cc
with
218 additions
and
215 deletions
test/fdcheck.cc
+
0
−
215
View file @
00fa65b6
...
...
@@ -16,225 +16,10 @@ const int blocksize = 6;
using
namespace
Dune
;
void
testDDExp
()
{
array
<
FieldVector
<
double
,
3
>
,
125
>
v
;
int
ct
=
0
;
double
eps
=
1e-4
;
for
(
int
i
=-
2
;
i
<
3
;
i
++
)
for
(
int
j
=-
2
;
j
<
3
;
j
++
)
for
(
int
k
=-
2
;
k
<
3
;
k
++
)
{
v
[
ct
][
0
]
=
i
;
v
[
ct
][
1
]
=
j
;
v
[
ct
][
2
]
=
k
;
ct
++
;
}
for
(
size_t
i
=
0
;
i
<
v
.
size
();
i
++
)
{
// Compute FD approximation of second derivative of exp
Dune
::
array
<
Dune
::
FieldMatrix
<
double
,
3
,
3
>
,
4
>
fdDDExp
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
k
=
0
;
k
<
3
;
k
++
)
{
if
(
j
==
k
)
{
Quaternion
<
double
>
forwardQ
=
Quaternion
<
double
>::
exp
(
v
[
i
][
0
]
+
(
j
==
0
)
*
eps
,
v
[
i
][
1
]
+
(
j
==
1
)
*
eps
,
v
[
i
][
2
]
+
(
j
==
2
)
*
eps
);
Quaternion
<
double
>
centerQ
=
Quaternion
<
double
>::
exp
(
v
[
i
][
0
],
v
[
i
][
1
],
v
[
i
][
2
]);
Quaternion
<
double
>
backwardQ
=
Quaternion
<
double
>::
exp
(
v
[
i
][
0
]
-
(
j
==
0
)
*
eps
,
v
[
i
][
1
]
-
(
j
==
1
)
*
eps
,
v
[
i
][
2
]
-
(
j
==
2
)
*
eps
);
for
(
int
l
=
0
;
l
<
4
;
l
++
)
fdDDExp
[
l
][
j
][
j
]
=
(
forwardQ
[
l
]
-
2
*
centerQ
[
l
]
+
backwardQ
[
l
])
/
(
eps
*
eps
);
}
else
{
SkewMatrix
<
double
,
3
>
ffV
(
v
[
i
]);
ffV
.
axial
()[
j
]
+=
eps
;
ffV
.
axial
()[
k
]
+=
eps
;
SkewMatrix
<
double
,
3
>
fbV
(
v
[
i
]);
fbV
.
axial
()[
j
]
+=
eps
;
fbV
.
axial
()[
k
]
-=
eps
;
SkewMatrix
<
double
,
3
>
bfV
(
v
[
i
]);
bfV
.
axial
()[
j
]
-=
eps
;
bfV
.
axial
()[
k
]
+=
eps
;
SkewMatrix
<
double
,
3
>
bbV
(
v
[
i
]);
bbV
.
axial
()[
j
]
-=
eps
;
bbV
.
axial
()[
k
]
-=
eps
;
Quaternion
<
double
>
forwardForwardQ
=
Quaternion
<
double
>::
exp
(
ffV
);
Quaternion
<
double
>
forwardBackwardQ
=
Quaternion
<
double
>::
exp
(
fbV
);
Quaternion
<
double
>
backwardForwardQ
=
Quaternion
<
double
>::
exp
(
bfV
);
Quaternion
<
double
>
backwardBackwardQ
=
Quaternion
<
double
>::
exp
(
bbV
);
for
(
int
l
=
0
;
l
<
4
;
l
++
)
fdDDExp
[
l
][
j
][
k
]
=
(
forwardForwardQ
[
l
]
+
backwardBackwardQ
[
l
]
-
forwardBackwardQ
[
l
]
-
backwardForwardQ
[
l
])
/
(
4
*
eps
*
eps
);
}
}
}
// Compute analytical second derivative of exp
Dune
::
array
<
Dune
::
FieldMatrix
<
double
,
3
,
3
>
,
4
>
ddExp
;
Rotation
<
double
,
3
>::
DDexp
(
v
[
i
],
ddExp
);
for
(
int
m
=
0
;
m
<
4
;
m
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
if
(
std
::
abs
(
fdDDExp
[
m
][
j
][
k
]
-
ddExp
[
m
][
j
][
k
])
>
eps
)
{
std
::
cout
<<
"Error at v = "
<<
v
[
i
]
<<
"["
<<
m
<<
", "
<<
j
<<
", "
<<
k
<<
"] "
<<
" fd: "
<<
fdDDExp
[
m
][
j
][
k
]
<<
" analytical: "
<<
ddExp
[
m
][
j
][
k
]
<<
std
::
endl
;
}
}
}
void
testDerivativeOfInterpolatedPosition
()
{
array
<
Quaternion
<
double
>
,
6
>
q
;
FieldVector
<
double
,
3
>
xAxis
(
0
);
xAxis
[
0
]
=
1
;
FieldVector
<
double
,
3
>
yAxis
(
0
);
yAxis
[
1
]
=
1
;
FieldVector
<
double
,
3
>
zAxis
(
0
);
zAxis
[
2
]
=
1
;
q
[
0
]
=
Quaternion
<
double
>
(
xAxis
,
0
);
q
[
1
]
=
Quaternion
<
double
>
(
xAxis
,
M_PI
/
2
);
q
[
2
]
=
Quaternion
<
double
>
(
yAxis
,
0
);
q
[
3
]
=
Quaternion
<
double
>
(
yAxis
,
M_PI
/
2
);
q
[
4
]
=
Quaternion
<
double
>
(
zAxis
,
0
);
q
[
5
]
=
Quaternion
<
double
>
(
zAxis
,
M_PI
/
2
);
double
eps
=
1e-7
;
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
for
(
int
j
=
0
;
j
<
6
;
j
++
)
{
for
(
int
k
=
0
;
k
<
7
;
k
++
)
{
double
s
=
k
/
6.0
;
array
<
Quaternion
<
double
>
,
6
>
fdGrad
;
// ///////////////////////////////////////////////////////////
// First: test the interpolated position
// ///////////////////////////////////////////////////////////
fdGrad
[
0
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
q
[
j
],
s
);
fdGrad
[
0
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
q
[
j
],
s
);
fdGrad
[
0
]
/=
2
*
eps
;
fdGrad
[
1
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
q
[
j
],
s
);
fdGrad
[
1
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
q
[
j
],
s
);
fdGrad
[
1
]
/=
2
*
eps
;
fdGrad
[
2
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
q
[
j
],
s
);
fdGrad
[
2
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
q
[
j
],
s
);
fdGrad
[
2
]
/=
2
*
eps
;
fdGrad
[
3
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
s
);
fdGrad
[
3
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
s
);
fdGrad
[
3
]
/=
2
*
eps
;
fdGrad
[
4
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
s
);
fdGrad
[
4
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
s
);
fdGrad
[
4
]
/=
2
*
eps
;
fdGrad
[
5
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
s
);
fdGrad
[
5
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
s
);
fdGrad
[
5
]
/=
2
*
eps
;
// Compute analytical gradient
array
<
Quaternion
<
double
>
,
6
>
grad
;
RodLocalStiffness
<
OneDGrid
,
double
>::
interpolationDerivative
(
q
[
i
],
q
[
j
],
s
,
grad
);
for
(
int
l
=
0
;
l
<
6
;
l
++
)
{
Quaternion
<
double
>
diff
=
fdGrad
[
l
];
diff
-=
grad
[
l
];
if
(
diff
.
two_norm
()
>
1e-6
)
{
std
::
cout
<<
"Error in position "
<<
l
<<
": fd: "
<<
fdGrad
[
l
]
<<
" analytical: "
<<
grad
[
l
]
<<
std
::
endl
;
}
}
// ///////////////////////////////////////////////////////////
// Second: test the interpolated velocity vector
// ///////////////////////////////////////////////////////////
for
(
int
l
=
1
;
l
<
7
;
l
++
)
{
double
intervalLength
=
l
/
(
double
(
3
));
fdGrad
[
0
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
0
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
0
]
/=
2
*
eps
;
fdGrad
[
1
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
1
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
1
]
/=
2
*
eps
;
fdGrad
[
2
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
2
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
2
]
/=
2
*
eps
;
fdGrad
[
3
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
s
,
intervalLength
);
fdGrad
[
3
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
s
,
intervalLength
);
fdGrad
[
3
]
/=
2
*
eps
;
fdGrad
[
4
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
s
,
intervalLength
);
fdGrad
[
4
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
s
,
intervalLength
);
fdGrad
[
4
]
/=
2
*
eps
;
fdGrad
[
5
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
s
,
intervalLength
);
fdGrad
[
5
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
s
,
intervalLength
);
fdGrad
[
5
]
/=
2
*
eps
;
// Compute analytical velocity vector gradient
RodLocalStiffness
<
OneDGrid
,
double
>::
interpolationVelocityDerivative
(
q
[
i
],
q
[
j
],
s
,
intervalLength
,
grad
);
for
(
int
m
=
0
;
m
<
6
;
m
++
)
{
Quaternion
<
double
>
diff
=
fdGrad
[
m
];
diff
-=
grad
[
m
];
if
(
diff
.
two_norm
()
>
1e-6
)
{
std
::
cout
<<
"Error in velocity "
<<
m
<<
": s = "
<<
s
<<
" of ("
<<
intervalLength
<<
")"
<<
" fd: "
<<
fdGrad
[
m
]
<<
" analytical: "
<<
grad
[
m
]
<<
std
::
endl
;
}
}
}
}
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
try
{
// //////////////////////////////////////////////
// Test second derivative of exp
// //////////////////////////////////////////////
testDDExp
();
// //////////////////////////////////////////////
// Test derivative of interpolated position
// //////////////////////////////////////////////
testDerivativeOfInterpolatedPosition
();
exit
(
0
);
typedef
std
::
vector
<
RigidBodyMotion
<
double
,
3
>
>
SolutionType
;
// ///////////////////////////////////////
...
...
This diff is collapsed.
Click to expand it.
test/rotationtest.cc
+
218
−
0
View file @
00fa65b6
...
...
@@ -10,6 +10,214 @@
using
namespace
Dune
;
void
testDDExp
()
{
array
<
FieldVector
<
double
,
3
>
,
125
>
v
;
int
ct
=
0
;
double
eps
=
1e-4
;
for
(
int
i
=-
2
;
i
<
3
;
i
++
)
for
(
int
j
=-
2
;
j
<
3
;
j
++
)
for
(
int
k
=-
2
;
k
<
3
;
k
++
)
{
v
[
ct
][
0
]
=
i
;
v
[
ct
][
1
]
=
j
;
v
[
ct
][
2
]
=
k
;
ct
++
;
}
for
(
size_t
i
=
0
;
i
<
v
.
size
();
i
++
)
{
// Compute FD approximation of second derivative of exp
Dune
::
array
<
Dune
::
FieldMatrix
<
double
,
3
,
3
>
,
4
>
fdDDExp
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
k
=
0
;
k
<
3
;
k
++
)
{
if
(
j
==
k
)
{
Quaternion
<
double
>
forwardQ
=
Quaternion
<
double
>::
exp
(
v
[
i
][
0
]
+
(
j
==
0
)
*
eps
,
v
[
i
][
1
]
+
(
j
==
1
)
*
eps
,
v
[
i
][
2
]
+
(
j
==
2
)
*
eps
);
Quaternion
<
double
>
centerQ
=
Quaternion
<
double
>::
exp
(
v
[
i
][
0
],
v
[
i
][
1
],
v
[
i
][
2
]);
Quaternion
<
double
>
backwardQ
=
Quaternion
<
double
>::
exp
(
v
[
i
][
0
]
-
(
j
==
0
)
*
eps
,
v
[
i
][
1
]
-
(
j
==
1
)
*
eps
,
v
[
i
][
2
]
-
(
j
==
2
)
*
eps
);
for
(
int
l
=
0
;
l
<
4
;
l
++
)
fdDDExp
[
l
][
j
][
j
]
=
(
forwardQ
[
l
]
-
2
*
centerQ
[
l
]
+
backwardQ
[
l
])
/
(
eps
*
eps
);
}
else
{
SkewMatrix
<
double
,
3
>
ffV
(
v
[
i
]);
ffV
.
axial
()[
j
]
+=
eps
;
ffV
.
axial
()[
k
]
+=
eps
;
SkewMatrix
<
double
,
3
>
fbV
(
v
[
i
]);
fbV
.
axial
()[
j
]
+=
eps
;
fbV
.
axial
()[
k
]
-=
eps
;
SkewMatrix
<
double
,
3
>
bfV
(
v
[
i
]);
bfV
.
axial
()[
j
]
-=
eps
;
bfV
.
axial
()[
k
]
+=
eps
;
SkewMatrix
<
double
,
3
>
bbV
(
v
[
i
]);
bbV
.
axial
()[
j
]
-=
eps
;
bbV
.
axial
()[
k
]
-=
eps
;
Quaternion
<
double
>
forwardForwardQ
=
Quaternion
<
double
>::
exp
(
ffV
);
Quaternion
<
double
>
forwardBackwardQ
=
Quaternion
<
double
>::
exp
(
fbV
);
Quaternion
<
double
>
backwardForwardQ
=
Quaternion
<
double
>::
exp
(
bfV
);
Quaternion
<
double
>
backwardBackwardQ
=
Quaternion
<
double
>::
exp
(
bbV
);
for
(
int
l
=
0
;
l
<
4
;
l
++
)
fdDDExp
[
l
][
j
][
k
]
=
(
forwardForwardQ
[
l
]
+
backwardBackwardQ
[
l
]
-
forwardBackwardQ
[
l
]
-
backwardForwardQ
[
l
])
/
(
4
*
eps
*
eps
);
}
}
}
// Compute analytical second derivative of exp
Dune
::
array
<
Dune
::
FieldMatrix
<
double
,
3
,
3
>
,
4
>
ddExp
;
Rotation
<
double
,
3
>::
DDexp
(
v
[
i
],
ddExp
);
for
(
int
m
=
0
;
m
<
4
;
m
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
if
(
std
::
abs
(
fdDDExp
[
m
][
j
][
k
]
-
ddExp
[
m
][
j
][
k
])
>
eps
)
{
std
::
cout
<<
"Error at v = "
<<
v
[
i
]
<<
"["
<<
m
<<
", "
<<
j
<<
", "
<<
k
<<
"] "
<<
" fd: "
<<
fdDDExp
[
m
][
j
][
k
]
<<
" analytical: "
<<
ddExp
[
m
][
j
][
k
]
<<
std
::
endl
;
}
}
}
void
testDerivativeOfInterpolatedPosition
()
{
array
<
Quaternion
<
double
>
,
6
>
q
;
FieldVector
<
double
,
3
>
xAxis
(
0
);
xAxis
[
0
]
=
1
;
FieldVector
<
double
,
3
>
yAxis
(
0
);
yAxis
[
1
]
=
1
;
FieldVector
<
double
,
3
>
zAxis
(
0
);
zAxis
[
2
]
=
1
;
q
[
0
]
=
Quaternion
<
double
>
(
xAxis
,
0
);
q
[
1
]
=
Quaternion
<
double
>
(
xAxis
,
M_PI
/
2
);
q
[
2
]
=
Quaternion
<
double
>
(
yAxis
,
0
);
q
[
3
]
=
Quaternion
<
double
>
(
yAxis
,
M_PI
/
2
);
q
[
4
]
=
Quaternion
<
double
>
(
zAxis
,
0
);
q
[
5
]
=
Quaternion
<
double
>
(
zAxis
,
M_PI
/
2
);
double
eps
=
1e-7
;
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
for
(
int
j
=
0
;
j
<
6
;
j
++
)
{
for
(
int
k
=
0
;
k
<
7
;
k
++
)
{
double
s
=
k
/
6.0
;
array
<
Quaternion
<
double
>
,
6
>
fdGrad
;
// ///////////////////////////////////////////////////////////
// First: test the interpolated position
// ///////////////////////////////////////////////////////////
fdGrad
[
0
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
q
[
j
],
s
);
fdGrad
[
0
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
q
[
j
],
s
);
fdGrad
[
0
]
/=
2
*
eps
;
fdGrad
[
1
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
q
[
j
],
s
);
fdGrad
[
1
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
q
[
j
],
s
);
fdGrad
[
1
]
/=
2
*
eps
;
fdGrad
[
2
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
q
[
j
],
s
);
fdGrad
[
2
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
q
[
j
],
s
);
fdGrad
[
2
]
/=
2
*
eps
;
fdGrad
[
3
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
s
);
fdGrad
[
3
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
s
);
fdGrad
[
3
]
/=
2
*
eps
;
fdGrad
[
4
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
s
);
fdGrad
[
4
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
s
);
fdGrad
[
4
]
/=
2
*
eps
;
fdGrad
[
5
]
=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
s
);
fdGrad
[
5
]
-=
Rotation
<
double
,
3
>::
interpolate
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
s
);
fdGrad
[
5
]
/=
2
*
eps
;
// Compute analytical gradient
array
<
Quaternion
<
double
>
,
6
>
grad
;
RodLocalStiffness
<
OneDGrid
,
double
>::
interpolationDerivative
(
q
[
i
],
q
[
j
],
s
,
grad
);
for
(
int
l
=
0
;
l
<
6
;
l
++
)
{
Quaternion
<
double
>
diff
=
fdGrad
[
l
];
diff
-=
grad
[
l
];
if
(
diff
.
two_norm
()
>
1e-6
)
{
std
::
cout
<<
"Error in position "
<<
l
<<
": fd: "
<<
fdGrad
[
l
]
<<
" analytical: "
<<
grad
[
l
]
<<
std
::
endl
;
}
}
// ///////////////////////////////////////////////////////////
// Second: test the interpolated velocity vector
// ///////////////////////////////////////////////////////////
for
(
int
l
=
1
;
l
<
7
;
l
++
)
{
double
intervalLength
=
l
/
(
double
(
3
));
fdGrad
[
0
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
0
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
0
]
/=
2
*
eps
;
fdGrad
[
1
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
1
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
1
]
/=
2
*
eps
;
fdGrad
[
2
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
2
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
q
[
j
],
s
,
intervalLength
);
fdGrad
[
2
]
/=
2
*
eps
;
fdGrad
[
3
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
eps
,
0
,
0
)),
s
,
intervalLength
);
fdGrad
[
3
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
-
eps
,
0
,
0
)),
s
,
intervalLength
);
fdGrad
[
3
]
/=
2
*
eps
;
fdGrad
[
4
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
eps
,
0
)),
s
,
intervalLength
);
fdGrad
[
4
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
-
eps
,
0
)),
s
,
intervalLength
);
fdGrad
[
4
]
/=
2
*
eps
;
fdGrad
[
5
]
=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
eps
)),
s
,
intervalLength
);
fdGrad
[
5
]
-=
Rotation
<
double
,
3
>::
interpolateDerivative
(
q
[
i
],
q
[
j
].
mult
(
Quaternion
<
double
>::
exp
(
0
,
0
,
-
eps
)),
s
,
intervalLength
);
fdGrad
[
5
]
/=
2
*
eps
;
// Compute analytical velocity vector gradient
RodLocalStiffness
<
OneDGrid
,
double
>::
interpolationVelocityDerivative
(
q
[
i
],
q
[
j
],
s
,
intervalLength
,
grad
);
for
(
int
m
=
0
;
m
<
6
;
m
++
)
{
Quaternion
<
double
>
diff
=
fdGrad
[
m
];
diff
-=
grad
[
m
];
if
(
diff
.
two_norm
()
>
1e-6
)
{
std
::
cout
<<
"Error in velocity "
<<
m
<<
": s = "
<<
s
<<
" of ("
<<
intervalLength
<<
")"
<<
" fd: "
<<
fdGrad
[
m
]
<<
" analytical: "
<<
grad
[
m
]
<<
std
::
endl
;
}
}
}
}
}
}
}
void
testRotation
(
Rotation
<
double
,
3
>
q
)
{
// Make sure it really is a unit quaternion
...
...
@@ -118,6 +326,16 @@ int main (int argc, char *argv[]) try
for
(
int
i
=
0
;
i
<
nTestPoints
;
i
++
)
testRotation
(
testPoints
[
i
]);
// //////////////////////////////////////////////
// Test second derivative of exp
// //////////////////////////////////////////////
testDDExp
();
// //////////////////////////////////////////////
// Test derivative of interpolated position
// //////////////////////////////////////////////
testDerivativeOfInterpolatedPosition
();
}
catch
(
Exception
e
)
{
std
::
cout
<<
e
<<
std
::
endl
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment