Skip to content
Snippets Groups Projects
Commit 6a575617 authored by Oliver Sander's avatar Oliver Sander Committed by sander@FU-BERLIN.DE
Browse files

Neuer Test für den Gradienten der Biegeenergy

[[Imported from SVN: r8628]]
parent c8c0ed6a
No related branches found
No related tags found
No related merge requests found
......@@ -346,12 +346,14 @@ void testDerivativeOfGradientOfRotationMatrixWRTCoefficient(const LocalGeodesicF
// Evaluate the analytical derivative
Dune::array<Tensor3<double,3,3,4>, 3> dDR_dv;
Tensor3<double,3,domainDim,4> dDR3_dv;
CosseratEnergyLocalStiffness<typename GridType::LeafGridView,LocalFiniteElement,3>::compute_dDR_dv(value,
derOfValueWRTx,
derOfValueWRTCoefficient,
derOfGradientWRTCoefficient,
dDR_dv);
dDR_dv,
dDR3_dv);
Dune::array<Tensor3<double,3,3,4>, 3> dDR_dv_FD;
......@@ -385,6 +387,153 @@ void testDerivativeOfGradientOfRotationMatrixWRTCoefficient(const LocalGeodesicF
}
template <int domainDim, class GridType, class LocalFiniteElement>
void testDerivativeOfBendingEnergy(const LocalGeodesicFEFunction<domainDim,double,LocalFiniteElement,RigidBodyMotion<double,3> >& f,
const FieldVector<double,domainDim>& local,
unsigned int coeff)
{
ParameterTree materialParameters;
materialParameters["thickness"] = "1";
materialParameters["mu"] = "1";
materialParameters["lambda"] = "1";
materialParameters["mu_c"] = "1";
materialParameters["L_c"] = "1";
materialParameters["q"] = "1";
materialParameters["kappa"] = "1";
ConstantFunction<Dune::FieldVector<double,GridType::dimension>, Dune::FieldVector<double,3> > zeroFunction(Dune::FieldVector<double,3>(0));
CosseratEnergyLocalStiffness<typename GridType::LeafGridView,LocalFiniteElement,3> assembler(materialParameters,
NULL,
&zeroFunction);
RigidBodyMotion<double,3> value = f.evaluate(local);
FieldMatrix<double,7,domainDim> derOfValueWRTx = f.evaluateDerivative(local);
FieldMatrix<double,7,7> derOfValueWRTCoefficient;
f.evaluateDerivativeOfValueWRTCoefficient(local, coeff, derOfValueWRTCoefficient);
Tensor3<double,7,7,domainDim> derOfGradientWRTCoefficient;
f.evaluateDerivativeOfGradientWRTCoefficient(local, coeff, derOfGradientWRTCoefficient);
Tensor3<double,7,7,domainDim> FDderOfGradientWRTCoefficient;
f.evaluateFDDerivativeOfGradientWRTCoefficient(local, coeff, FDderOfGradientWRTCoefficient);
// Evaluate the analytical derivative
Dune::array<Tensor3<double,3,3,4>, 3> dDR_dv;
Tensor3<double,3,domainDim,4> dDR3_dv;
CosseratEnergyLocalStiffness<typename GridType::LeafGridView,LocalFiniteElement,3>::compute_dDR_dv(value,
derOfValueWRTx,
derOfValueWRTCoefficient,
derOfGradientWRTCoefficient,
dDR_dv,
dDR3_dv);
//
Dune::FieldMatrix<double,3,3> R;
value.q.matrix(R);
Tensor3<double,3,3,3> DR;
CosseratEnergyLocalStiffness<typename GridType::LeafGridView,LocalFiniteElement,3>::computeDR(value, derOfValueWRTx, DR);
Tensor3<double,3,3,4> dR_dv;
CosseratEnergyLocalStiffness<typename GridType::LeafGridView,LocalFiniteElement,3>::computeDR_dv(value, derOfValueWRTCoefficient, dR_dv);
FieldVector<double,7> embeddedGradient;
assembler.bendingEnergyGradient(embeddedGradient,
R,
dR_dv,
DR,
dDR3_dv);
// ///////////////////////////////////////////////////////////
// Compute gradient by finite-difference approximation
// ///////////////////////////////////////////////////////////
double eps = 1e-4;
FieldVector<double,4> embeddedFDGradient;
size_t nDofs = f.localFiniteElement_.localBasis().size();
std::vector<TargetSpace> forwardSolution(nDofs);
std::vector<TargetSpace> backwardSolution(nDofs);
for (size_t i=0; i<nDofs; i++)
forwardSolution[i] = backwardSolution[i] = f.coefficient(i);
for (int j=0; j<4; j++) {
FieldVector<double,7> forwardCorrection(0);
forwardCorrection[j+3] += eps;
FieldVector<double,7> backwardCorrection(0);
backwardCorrection[j+3] -= eps;
forwardSolution[coeff] = TargetSpace(f.coefficient(coeff).globalCoordinates() + forwardCorrection);
backwardSolution[coeff] = TargetSpace(f.coefficient(coeff).globalCoordinates() + backwardCorrection);
LocalGeodesicFEFunction<domainDim,double,LocalFiniteElement,RigidBodyMotion<double,3> > forwardF(f.localFiniteElement_,forwardSolution);
LocalGeodesicFEFunction<domainDim,double,LocalFiniteElement,RigidBodyMotion<double,3> > backwardF(f.localFiniteElement_,backwardSolution);
RigidBodyMotion<double,3> forwardValue = forwardF.evaluate(local);
RigidBodyMotion<double,3> backwardValue = backwardF.evaluate(local);
FieldMatrix<double,3,3> forwardR, backwardR;
forwardValue.q.matrix(forwardR);
backwardValue.q.matrix(backwardR);
FieldMatrix<double,7,domainDim> forwardDerivative = forwardF.evaluateDerivative(local);
FieldMatrix<double,7,domainDim> backwardDerivative = backwardF.evaluateDerivative(local);
Tensor3<double,3,3,3> forwardDR;
Tensor3<double,3,3,3> backwardDR;
assembler.computeDR(forwardValue, forwardDerivative, forwardDR);
assembler.computeDR(backwardValue, backwardDerivative, backwardDR);
double forwardEnergy = assembler.bendingEnergy(forwardR, forwardDR);
double backwardEnergy = assembler.bendingEnergy(backwardR, backwardDR);
embeddedFDGradient[j] = (forwardEnergy - backwardEnergy) / (2*eps);
}
embeddedFDGradient = f.coefficient(coeff).q.projectOntoTangentSpace(embeddedFDGradient);
////////////////////////////////////////////////
// Check whether the two are the same
////////////////////////////////////////////////
double maxError = 0;
for (size_t i=0; i<4; i++) {
double diff = std::fabs(embeddedGradient[i+3] - embeddedFDGradient[i]);
maxError = std::max(maxError, diff);
}
if (maxError > 1e-3) {
std::cout << "Analytical and FD gradients differ!"
<< " local: " << local
<< " coefficient: " << coeff << std::endl;
std::cout << "embeddedGradient:" << std::endl;
std::cout << embeddedGradient[3] << " " << embeddedGradient[4] << " " << embeddedGradient[5] << " " << embeddedGradient[6] << std::endl << std::endl;
std::cout << "embeddedFDGradient:" << std::endl;
std::cout << embeddedFDGradient << std::endl;
abort();
}
}
template <int domainDim>
void testDerivativeOfGradientOfRotationMatrixWRTCoefficient()
{
......@@ -431,8 +580,11 @@ void testDerivativeOfGradientOfRotationMatrixWRTCoefficient()
= Dune::QuadratureRules<double, domainDim>::rule(GeometryType(GeometryType::simplex,domainDim), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
testDerivativeOfGradientOfRotationMatrixWRTCoefficient<domainDim,GridType,LocalFiniteElement>(f, quad[pt].position(), j);
FieldVector<double,domainDim> quadPos = quad[pt].position();
testDerivativeOfGradientOfRotationMatrixWRTCoefficient<domainDim,GridType,LocalFiniteElement>(f, quadPos, j);
testDerivativeOfBendingEnergy<domainDim,GridType,LocalFiniteElement>(f, quadPos, j);
}
......@@ -463,8 +615,6 @@ void testEnergyGradient()
PQkLocalFiniteElementCache<double,double,GridType::dimension,1> feCache;
typedef typename PQkLocalFiniteElementCache<double,double,GridType::dimension,1>::FiniteElementType LocalFiniteElement;
//LocalGeodesicFEFunction<domainDim,double,LocalFiniteElement,TargetSpace> f(feCache.get(element),corners);
ParameterTree materialParameters;
materialParameters["thickness"] = "0.1";
materialParameters["mu"] = "3.8462e+05";
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment