Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
7539404e
"README.md" did not exist on "643968b80ea7f7b3853807375eccf4e7f19da24b"
Commit
7539404e
authored
13 years ago
by
Oliver Sander
Committed by
sander@FU-BERLIN.DE
13 years ago
Browse files
Options
Downloads
Patches
Plain Diff
really make the domain dimension a parameter
[[Imported from SVN: r7103]]
parent
5a5ef957
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test/localgeodesicfefunctiontest.cc
+56
-52
56 additions, 52 deletions
test/localgeodesicfefunctiontest.cc
with
56 additions
and
52 deletions
test/localgeodesicfefunctiontest.cc
+
56
−
52
View file @
7539404e
...
@@ -12,14 +12,11 @@
...
@@ -12,14 +12,11 @@
#include
<dune/gfe/localgeodesicfefunction.hh>
#include
<dune/gfe/localgeodesicfefunction.hh>
// Domain dimension
const
int
dim
=
2
;
const
double
eps
=
1e-6
;
const
double
eps
=
1e-6
;
using
namespace
Dune
;
using
namespace
Dune
;
/** \brief
dim
-dimensional multi-index
/** \brief
N
-dimensional multi-index
*/
*/
template
<
int
N
>
template
<
int
N
>
class
MultiIndex
class
MultiIndex
...
@@ -66,18 +63,19 @@ public:
...
@@ -66,18 +63,19 @@ public:
};
};
template
<
int
domainDim
>
void
testDerivativeTangentiality
(
const
RealTuple
<
1
>&
x
,
void
testDerivativeTangentiality
(
const
RealTuple
<
1
>&
x
,
const
FieldMatrix
<
double
,
1
,
dim
>&
derivative
)
const
FieldMatrix
<
double
,
1
,
d
omainD
im
>&
derivative
)
{
{
// By construction, derivatives of RealTuples are always tangent
// By construction, derivatives of RealTuples are always tangent
}
}
// the columns of the derivative must be tangential to the manifold
// the columns of the derivative must be tangential to the manifold
template
<
int
vectorDim
>
template
<
int
domainDim
,
int
vectorDim
>
void
testDerivativeTangentiality
(
const
UnitVector
<
vectorDim
>&
x
,
void
testDerivativeTangentiality
(
const
UnitVector
<
vectorDim
>&
x
,
const
FieldMatrix
<
double
,
vectorDim
,
dim
>&
derivative
)
const
FieldMatrix
<
double
,
vectorDim
,
d
omainD
im
>&
derivative
)
{
{
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
for
(
int
i
=
0
;
i
<
d
omainD
im
;
i
++
)
{
// The i-th column is a tangent vector if its scalar product with the global coordinates
// The i-th column is a tangent vector if its scalar product with the global coordinates
// of x vanishes.
// of x vanishes.
...
@@ -94,11 +92,14 @@ void testDerivativeTangentiality(const UnitVector<vectorDim>& x,
...
@@ -94,11 +92,14 @@ void testDerivativeTangentiality(const UnitVector<vectorDim>& x,
/** \brief Test whether interpolation is invariant under permutation of the simplex vertices
/** \brief Test whether interpolation is invariant under permutation of the simplex vertices
*/
*/
template
<
class
TargetSpace
>
template
<
int
domainDim
,
class
TargetSpace
>
void
testPermutationInvariance
(
const
std
::
vector
<
TargetSpace
>&
corners
)
void
testPermutationInvariance
(
const
std
::
vector
<
TargetSpace
>&
corners
)
{
{
std
::
vector
<
TargetSpace
>
cornersRotated1
(
dim
+
1
);
// works only for 2d domains
std
::
vector
<
TargetSpace
>
cornersRotated2
(
dim
+
1
);
assert
(
domainDim
==
2
);
std
::
vector
<
TargetSpace
>
cornersRotated1
(
domainDim
+
1
);
std
::
vector
<
TargetSpace
>
cornersRotated2
(
domainDim
+
1
);
cornersRotated1
[
0
]
=
cornersRotated2
[
2
]
=
corners
[
1
];
cornersRotated1
[
0
]
=
cornersRotated2
[
2
]
=
corners
[
1
];
cornersRotated1
[
1
]
=
cornersRotated2
[
0
]
=
corners
[
2
];
cornersRotated1
[
1
]
=
cornersRotated2
[
0
]
=
corners
[
2
];
...
@@ -111,16 +112,16 @@ void testPermutationInvariance(const std::vector<TargetSpace>& corners)
...
@@ -111,16 +112,16 @@ void testPermutationInvariance(const std::vector<TargetSpace>& corners)
// A quadrature rule as a set of test points
// A quadrature rule as a set of test points
int
quadOrder
=
3
;
int
quadOrder
=
3
;
const
Dune
::
QuadratureRule
<
double
,
dim
>&
quad
const
Dune
::
QuadratureRule
<
double
,
d
omainD
im
>&
quad
=
Dune
::
QuadratureRules
<
double
,
dim
>::
rule
(
GeometryType
(
GeometryType
::
simplex
,
dim
),
quadOrder
);
=
Dune
::
QuadratureRules
<
double
,
d
omainD
im
>::
rule
(
GeometryType
(
GeometryType
::
simplex
,
d
omainD
im
),
quadOrder
);
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
const
Dune
::
FieldVector
<
double
,
dim
>&
quadPos
=
quad
[
pt
].
position
();
const
Dune
::
FieldVector
<
double
,
domainDim
>&
quadPos
=
quad
[
pt
].
position
();
Dune
::
FieldVector
<
double
,
dim
>
l0
=
quadPos
;
Dune
::
FieldVector
<
double
,
dim
>
l1
,
l2
;
Dune
::
FieldVector
<
double
,
domainDim
>
l0
=
quadPos
;
Dune
::
FieldVector
<
double
,
domainDim
>
l1
,
l2
;
l1
[
0
]
=
quadPos
[
1
];
l1
[
0
]
=
quadPos
[
1
];
l1
[
1
]
=
1
-
quadPos
[
0
]
-
quadPos
[
1
];
l1
[
1
]
=
1
-
quadPos
[
0
]
-
quadPos
[
1
];
...
@@ -140,7 +141,7 @@ void testPermutationInvariance(const std::vector<TargetSpace>& corners)
...
@@ -140,7 +141,7 @@ void testPermutationInvariance(const std::vector<TargetSpace>& corners)
}
}
template
<
class
TargetSpace
>
template
<
int
domainDim
,
class
TargetSpace
>
void
testDerivative
(
const
std
::
vector
<
TargetSpace
>&
corners
)
void
testDerivative
(
const
std
::
vector
<
TargetSpace
>&
corners
)
{
{
// Make local fe function to be tested
// Make local fe function to be tested
...
@@ -149,20 +150,20 @@ void testDerivative(const std::vector<TargetSpace>& corners)
...
@@ -149,20 +150,20 @@ void testDerivative(const std::vector<TargetSpace>& corners)
// A quadrature rule as a set of test points
// A quadrature rule as a set of test points
int
quadOrder
=
3
;
int
quadOrder
=
3
;
const
Dune
::
QuadratureRule
<
double
,
dim
>&
quad
const
Dune
::
QuadratureRule
<
double
,
d
omainD
im
>&
quad
=
Dune
::
QuadratureRules
<
double
,
dim
>::
rule
(
GeometryType
(
GeometryType
::
simplex
,
dim
),
quadOrder
);
=
Dune
::
QuadratureRules
<
double
,
d
omainD
im
>::
rule
(
GeometryType
(
GeometryType
::
simplex
,
d
omainD
im
),
quadOrder
);
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
const
Dune
::
FieldVector
<
double
,
dim
>&
quadPos
=
quad
[
pt
].
position
();
const
Dune
::
FieldVector
<
double
,
d
omainD
im
>&
quadPos
=
quad
[
pt
].
position
();
// evaluate actual derivative
// evaluate actual derivative
Dune
::
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
derivative
=
f
.
evaluateDerivative
(
quadPos
);
Dune
::
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
derivative
=
f
.
evaluateDerivative
(
quadPos
);
// evaluate fd approximation of derivative
// evaluate fd approximation of derivative
Dune
::
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
fdDerivative
=
f
.
evaluateDerivativeFD
(
quadPos
);
Dune
::
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
fdDerivative
=
f
.
evaluateDerivativeFD
(
quadPos
);
Dune
::
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
diff
=
derivative
;
Dune
::
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
diff
=
derivative
;
diff
-=
fdDerivative
;
diff
-=
fdDerivative
;
if
(
diff
.
infinity_norm
()
>
100
*
eps
)
{
if
(
diff
.
infinity_norm
()
>
100
*
eps
)
{
...
@@ -176,7 +177,7 @@ void testDerivative(const std::vector<TargetSpace>& corners)
...
@@ -176,7 +177,7 @@ void testDerivative(const std::vector<TargetSpace>& corners)
}
}
}
}
template
<
class
TargetSpace
>
template
<
int
domainDim
,
class
TargetSpace
>
void
testDerivativeOfGradientWRTCoefficients
(
const
std
::
vector
<
TargetSpace
>&
corners
)
void
testDerivativeOfGradientWRTCoefficients
(
const
std
::
vector
<
TargetSpace
>&
corners
)
{
{
// Make local fe function to be tested
// Make local fe function to be tested
...
@@ -185,22 +186,22 @@ void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& cor
...
@@ -185,22 +186,22 @@ void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& cor
// A quadrature rule as a set of test points
// A quadrature rule as a set of test points
int
quadOrder
=
3
;
int
quadOrder
=
3
;
const
Dune
::
QuadratureRule
<
double
,
dim
>&
quad
const
Dune
::
QuadratureRule
<
double
,
d
omainD
im
>&
quad
=
Dune
::
QuadratureRules
<
double
,
dim
>::
rule
(
GeometryType
(
GeometryType
::
simplex
,
dim
),
quadOrder
);
=
Dune
::
QuadratureRules
<
double
,
d
omainD
im
>::
rule
(
GeometryType
(
GeometryType
::
simplex
,
d
omainD
im
),
quadOrder
);
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
const
Dune
::
FieldVector
<
double
,
dim
>&
quadPos
=
quad
[
pt
].
position
();
const
Dune
::
FieldVector
<
double
,
d
omainD
im
>&
quadPos
=
quad
[
pt
].
position
();
// loop over the coefficients
// loop over the coefficients
for
(
size_t
i
=
0
;
i
<
corners
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
corners
.
size
();
i
++
)
{
// evaluate actual derivative
// evaluate actual derivative
Tensor3
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
derivative
;
Tensor3
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
derivative
;
f
.
evaluateDerivativeOfGradientWRTCoefficient
(
quadPos
,
i
,
derivative
);
f
.
evaluateDerivativeOfGradientWRTCoefficient
(
quadPos
,
i
,
derivative
);
// evaluate fd approximation of derivative
// evaluate fd approximation of derivative
Tensor3
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
fdDerivative
;
Tensor3
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
fdDerivative
;
for
(
int
j
=
0
;
j
<
TargetSpace
::
EmbeddedTangentVector
::
size
;
j
++
)
{
for
(
int
j
=
0
;
j
<
TargetSpace
::
EmbeddedTangentVector
::
size
;
j
++
)
{
...
@@ -215,8 +216,8 @@ void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& cor
...
@@ -215,8 +216,8 @@ void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& cor
LocalGeodesicFEFunction
<
2
,
double
,
TargetSpace
>
fPlus
(
cornersPlus
);
LocalGeodesicFEFunction
<
2
,
double
,
TargetSpace
>
fPlus
(
cornersPlus
);
LocalGeodesicFEFunction
<
2
,
double
,
TargetSpace
>
fMinus
(
cornersMinus
);
LocalGeodesicFEFunction
<
2
,
double
,
TargetSpace
>
fMinus
(
cornersMinus
);
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
hPlus
=
fPlus
.
evaluateDerivative
(
quadPos
);
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
hPlus
=
fPlus
.
evaluateDerivative
(
quadPos
);
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
dim
>
hMinus
=
fMinus
.
evaluateDerivative
(
quadPos
);
FieldMatrix
<
double
,
TargetSpace
::
EmbeddedTangentVector
::
size
,
d
omainD
im
>
hMinus
=
fMinus
.
evaluateDerivative
(
quadPos
);
fdDerivative
[
j
]
=
hPlus
;
fdDerivative
[
j
]
=
hPlus
;
fdDerivative
[
j
]
-=
hMinus
;
fdDerivative
[
j
]
-=
hMinus
;
...
@@ -238,6 +239,7 @@ void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& cor
...
@@ -238,6 +239,7 @@ void testDerivativeOfGradientWRTCoefficients(const std::vector<TargetSpace>& cor
}
}
template
<
int
domainDim
>
void
testRealTuples
()
void
testRealTuples
()
{
{
std
::
cout
<<
" --- Testing RealTuple<1> ---"
<<
std
::
endl
;
std
::
cout
<<
" --- Testing RealTuple<1> ---"
<<
std
::
endl
;
...
@@ -248,10 +250,11 @@ void testRealTuples()
...
@@ -248,10 +250,11 @@ void testRealTuples()
TargetSpace
(
2
),
TargetSpace
(
2
),
TargetSpace
(
3
)};
TargetSpace
(
3
)};
testPermutationInvariance
(
corners
);
testPermutationInvariance
<
domainDim
>
(
corners
);
testDerivative
(
corners
);
testDerivative
<
domainDim
>
(
corners
);
}
}
template
<
int
domainDim
>
void
testUnitVector2d
()
void
testUnitVector2d
()
{
{
std
::
cout
<<
" --- Testing UnitVector<2> ---"
<<
std
::
endl
;
std
::
cout
<<
" --- Testing UnitVector<2> ---"
<<
std
::
endl
;
...
@@ -262,21 +265,21 @@ void testUnitVector2d()
...
@@ -262,21 +265,21 @@ void testUnitVector2d()
double
testPoints
[
10
][
2
]
=
{{
1
,
0
},
{
0.5
,
0.5
},
{
0
,
1
},
{
-
0.5
,
0.5
},
{
-
1
,
0
},
{
-
0.5
,
-
0.5
},
{
0
,
-
1
},
{
0.5
,
-
0.5
},
{
0.1
,
1
},
{
1
,
.1
}};
double
testPoints
[
10
][
2
]
=
{{
1
,
0
},
{
0.5
,
0.5
},
{
0
,
1
},
{
-
0.5
,
0.5
},
{
-
1
,
0
},
{
-
0.5
,
-
0.5
},
{
0
,
-
1
},
{
0.5
,
-
0.5
},
{
0.1
,
1
},
{
1
,
.1
}};
// Set up elements of S^1
// Set up elements of S^1
std
::
vector
<
TargetSpace
>
corners
(
dim
+
1
);
std
::
vector
<
TargetSpace
>
corners
(
d
omainD
im
+
1
);
MultiIndex
<
dim
+
1
>
index
(
nTestPoints
);
MultiIndex
<
d
omainD
im
+
1
>
index
(
nTestPoints
);
int
numIndices
=
index
.
cycle
();
int
numIndices
=
index
.
cycle
();
for
(
int
i
=
0
;
i
<
numIndices
;
i
++
,
++
index
)
{
for
(
int
i
=
0
;
i
<
numIndices
;
i
++
,
++
index
)
{
for
(
int
j
=
0
;
j
<
dim
+
1
;
j
++
)
{
for
(
int
j
=
0
;
j
<
d
omainD
im
+
1
;
j
++
)
{
Dune
::
array
<
double
,
2
>
w
=
{
testPoints
[
index
[
j
]][
0
],
testPoints
[
index
[
j
]][
1
]};
Dune
::
array
<
double
,
2
>
w
=
{
testPoints
[
index
[
j
]][
0
],
testPoints
[
index
[
j
]][
1
]};
corners
[
j
]
=
UnitVector
<
2
>
(
w
);
corners
[
j
]
=
UnitVector
<
2
>
(
w
);
}
}
bool
spreadOut
=
false
;
bool
spreadOut
=
false
;
for
(
int
j
=
0
;
j
<
dim
+
1
;
j
++
)
for
(
int
j
=
0
;
j
<
d
omainD
im
+
1
;
j
++
)
for
(
int
k
=
0
;
k
<
dim
+
1
;
k
++
)
for
(
int
k
=
0
;
k
<
d
omainD
im
+
1
;
k
++
)
if
(
UnitVector
<
2
>::
distance
(
corners
[
j
],
corners
[
k
])
>
M_PI
*
0.98
)
if
(
UnitVector
<
2
>::
distance
(
corners
[
j
],
corners
[
k
])
>
M_PI
*
0.98
)
spreadOut
=
true
;
spreadOut
=
true
;
...
@@ -284,13 +287,14 @@ void testUnitVector2d()
...
@@ -284,13 +287,14 @@ void testUnitVector2d()
continue
;
continue
;
//testPermutationInvariance(corners);
//testPermutationInvariance(corners);
testDerivative
(
corners
);
testDerivative
<
domainDim
>
(
corners
);
testDerivativeOfGradientWRTCoefficients
(
corners
);
testDerivativeOfGradientWRTCoefficients
<
domainDim
>
(
corners
);
}
}
}
}
template
<
int
domainDim
>
void
testUnitVector3d
()
void
testUnitVector3d
()
{
{
std
::
cout
<<
" --- Testing UnitVector<3> ---"
<<
std
::
endl
;
std
::
cout
<<
" --- Testing UnitVector<3> ---"
<<
std
::
endl
;
...
@@ -302,29 +306,29 @@ void testUnitVector3d()
...
@@ -302,29 +306,29 @@ void testUnitVector3d()
{
-
0.490946
,
-
0.306456
,
0.81551
},{
-
0.944506
,
0.123687
,
-
0.304319
},
{
-
0.490946
,
-
0.306456
,
0.81551
},{
-
0.944506
,
0.123687
,
-
0.304319
},
{
-
0.6
,
0.1
,
-
0.2
},{
0.45
,
0.12
,
0.517
},
{
-
0.6
,
0.1
,
-
0.2
},{
0.45
,
0.12
,
0.517
},
{
-
0.1
,
0.3
,
-
0.1
},{
-
0.444506
,
0.123687
,
0.104319
},{
-
0.7
,
-
0.123687
,
-
0.304319
}};
{
-
0.1
,
0.3
,
-
0.1
},{
-
0.444506
,
0.123687
,
0.104319
},{
-
0.7
,
-
0.123687
,
-
0.304319
}};
assert
(
dim
==
2
);
// Set up elements of S^1
// Set up elements of S^1
std
::
vector
<
TargetSpace
>
corners
(
dim
+
1
);
std
::
vector
<
TargetSpace
>
corners
(
d
omainD
im
+
1
);
MultiIndex
<
dim
+
1
>
index
(
nTestPoints
);
MultiIndex
<
d
omainD
im
+
1
>
index
(
nTestPoints
);
int
numIndices
=
index
.
cycle
();
int
numIndices
=
index
.
cycle
();
for
(
int
i
=
0
;
i
<
numIndices
;
i
++
,
++
index
)
{
for
(
int
i
=
0
;
i
<
numIndices
;
i
++
,
++
index
)
{
for
(
int
j
=
0
;
j
<
dim
+
1
;
j
++
)
{
for
(
int
j
=
0
;
j
<
d
omainD
im
+
1
;
j
++
)
{
Dune
::
array
<
double
,
3
>
w
=
{
testPoints
[
index
[
j
]][
0
],
testPoints
[
index
[
j
]][
1
]};
Dune
::
array
<
double
,
3
>
w
=
{
testPoints
[
index
[
j
]][
0
],
testPoints
[
index
[
j
]][
1
]
,
testPoints
[
index
[
j
]][
2
]
};
corners
[
j
]
=
UnitVector
<
3
>
(
w
);
corners
[
j
]
=
UnitVector
<
3
>
(
w
);
}
}
//testPermutationInvariance(corners);
//testPermutationInvariance(corners);
testDerivative
(
corners
);
testDerivative
<
domainDim
>
(
corners
);
testDerivativeOfGradientWRTCoefficients
(
corners
);
testDerivativeOfGradientWRTCoefficients
<
domainDim
>
(
corners
);
}
}
}
}
template
<
int
domainDim
>
void
testRotations
()
void
testRotations
()
{
{
std
::
cout
<<
" --- Testing Rotation<3> ---"
<<
std
::
endl
;
std
::
cout
<<
" --- Testing Rotation<3> ---"
<<
std
::
endl
;
...
@@ -339,12 +343,12 @@ void testRotations()
...
@@ -339,12 +343,12 @@ void testRotations()
zAxis
[
2
]
=
1
;
zAxis
[
2
]
=
1
;
std
::
vector
<
TargetSpace
>
corners
(
dim
+
1
);
std
::
vector
<
TargetSpace
>
corners
(
d
omainD
im
+
1
);
corners
[
0
]
=
Rotation
<
3
,
double
>
(
xAxis
,
0.1
);
corners
[
0
]
=
Rotation
<
3
,
double
>
(
xAxis
,
0.1
);
corners
[
1
]
=
Rotation
<
3
,
double
>
(
yAxis
,
0.1
);
corners
[
1
]
=
Rotation
<
3
,
double
>
(
yAxis
,
0.1
);
corners
[
2
]
=
Rotation
<
3
,
double
>
(
zAxis
,
0.1
);
corners
[
2
]
=
Rotation
<
3
,
double
>
(
zAxis
,
0.1
);
testPermutationInvariance
(
corners
);
testPermutationInvariance
<
domainDim
>
(
corners
);
//testDerivative(corners);
//testDerivative(corners);
}
}
...
@@ -355,7 +359,7 @@ int main()
...
@@ -355,7 +359,7 @@ int main()
feenableexcept
(
FE_INVALID
);
feenableexcept
(
FE_INVALID
);
//testRealTuples();
//testRealTuples();
testUnitVector2d
();
testUnitVector2d
<
2
>
();
testUnitVector3d
();
testUnitVector3d
<
2
>
();
//testRotations();
//testRotations();
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment