Skip to content
Snippets Groups Projects
Commit 77bdda4d authored by Oliver Sander's avatar Oliver Sander Committed by sander@PCPOOL.MI.FU-BERLIN.DE
Browse files

snapshot commit: add new method to compute average pressure by a minimization scheme

[[Imported from SVN: r2036]]
parent 9f05df64
No related branches found
No related tags found
No related merge requests found
...@@ -6,10 +6,656 @@ ...@@ -6,10 +6,656 @@
#include <dune/ag-common/dgindexset.hh> #include <dune/ag-common/dgindexset.hh>
#include <dune/ag-common/crossproduct.hh> #include <dune/ag-common/crossproduct.hh>
#include <dune/ag-common/surfmassmatrix.hh>
#include "svd.hh" #include "svd.hh"
#include "lapackpp.h" #include "lapackpp.h"
#undef max #undef max
template <class GridType>
class PressureAverager : public Ipopt::TNLP
{
typedef double field_type;
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > MatrixType;
typedef typename MatrixType::row_type RowType;
enum {dim=GridType::dimension};
public:
/** \brief Constructor */
PressureAverager(const BoundaryPatch<GridType>* patch,
Dune::BlockVector<Dune::FieldVector<double,dim> >* result,
const Dune::FieldVector<double,dim>& resultantForce,
const Dune::FieldVector<double,dim>& resultantTorque,
const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* massMatrix,
const Dune::BlockVector<Dune::FieldVector<double,1> >* nodalWeights,
const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* constraintJacobian)
: jacobianCutoff_(1e-8), patch_(patch), x_(result),
massMatrix_(massMatrix), nodalWeights_(nodalWeights),
constraintJacobian_(constraintJacobian),
resultantForce_(resultantForce), resultantTorque_(resultantTorque)
{
patchArea_ = patch->area();
}
/** default destructor */
virtual ~PressureAverager() {};
/**@name Overloaded from TNLP */
//@{
/** Method to return some info about the nlp */
virtual bool get_nlp_info(Ipopt::Index& n, Ipopt::Index& m, Ipopt::Index& nnz_jac_g,
Ipopt::Index& nnz_h_lag, IndexStyleEnum& index_style);
/** Method to return the bounds for my problem */
virtual bool get_bounds_info(Ipopt::Index n, Ipopt::Number* x_l, Ipopt::Number* x_u,
Ipopt::Index m, Ipopt::Number* g_l, Ipopt::Number* g_u);
/** Method to return the starting point for the algorithm */
virtual bool get_starting_point(Ipopt::Index n, bool init_x, Ipopt::Number* x,
bool init_z, Ipopt::Number* z_L, Ipopt::Number* z_U,
Ipopt::Index m, bool init_lambda,
Ipopt::Number* lambda);
/** Method to return the objective value */
virtual bool eval_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number& obj_value);
/** Method to return the gradient of the objective */
virtual bool eval_grad_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number* grad_f);
/** Method to return the constraint residuals */
virtual bool eval_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Index m, Ipopt::Number* g);
/** Method to return:
* 1) The structure of the jacobian (if "values" is NULL)
* 2) The values of the jacobian (if "values" is not NULL)
*/
virtual bool eval_jac_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
Ipopt::Index m, Ipopt::Index nele_jac, Ipopt::Index* iRow, Ipopt::Index *jCol,
Ipopt::Number* values);
/** Method to return:
* 1) The structure of the hessian of the lagrangian (if "values" is NULL)
* 2) The values of the hessian of the lagrangian (if "values" is not NULL)
*/
virtual bool eval_h(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
Ipopt::Number obj_factor, Ipopt::Index m, const Ipopt::Number* lambda,
bool new_lambda, Ipopt::Index nele_hess, Ipopt::Index* iRow,
Ipopt::Index* jCol, Ipopt::Number* values);
//@}
/** @name Solution Methods */
//@{
/** This method is called when the algorithm is complete so the TNLP can store/write the solution */
virtual void finalize_solution(Ipopt::SolverReturn status,
Ipopt::Index n, const Ipopt::Number* x, const Ipopt::Number* z_L, const Ipopt::Number* z_U,
Ipopt::Index m, const Ipopt::Number* g, const Ipopt::Number* lambda,
Ipopt::Number obj_value,
const Ipopt::IpoptData* ip_data,
Ipopt::IpoptCalculatedQuantities* ip_cq);
//@}
// /////////////////////////////////
// Data
// /////////////////////////////////
/** \brief All entries in the constraint Jacobian smaller than the value
here are removed. This increases stability.
*/
const double jacobianCutoff_;
const BoundaryPatch<GridType>* patch_;
double patchArea_;
const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* massMatrix_;
const Dune::BlockVector<Dune::FieldVector<double,1> >* nodalWeights_;
const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* constraintJacobian_;
Dune::BlockVector<Dune::FieldVector<double,dim> >* x_;
Dune::FieldVector<double,dim> resultantForce_;
Dune::FieldVector<double,dim> resultantTorque_;
private:
/**@name Methods to block default compiler methods.
*/
//@{
// PressureAverager();
PressureAverager(const PressureAverager&);
PressureAverager& operator=(const PressureAverager&);
//@}
};
// returns the size of the problem
template <class GridType>
bool PressureAverager<GridType>::
get_nlp_info(Ipopt::Index& n, Ipopt::Index& m, Ipopt::Index& nnz_jac_g,
Ipopt::Index& nnz_h_lag, IndexStyleEnum& index_style)
{
// One variable for each vertex on the coupling boundary, and three for the closest constant field
n = patch_->numVertices()*dim + dim;
// prescribed total forces and moments
m = 2*dim;
// number of nonzeroes in the constraint Jacobian
// leave out the very small ones, as they create instabilities
nnz_jac_g = 0;
for (int i=0; i<m; i++) {
const RowType& jacobianRow = (*constraintJacobian_)[i];
for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt)
if ( (*cIt)[0][0] > jacobianCutoff_ )
nnz_jac_g++;
}
// We only need the lower left corner of the Hessian (since it is symmetric)
if (!massMatrix_)
DUNE_THROW(SolverError, "No mass matrix has been supplied!");
nnz_h_lag = 0;
// use the C style indexing (0-based)
index_style = Ipopt::TNLP::C_STYLE;
return true;
}
// returns the variable bounds
template <class GridType>
bool PressureAverager<GridType>::
get_bounds_info(Ipopt::Index n, Ipopt::Number* x_l, Ipopt::Number* x_u,
Ipopt::Index m, Ipopt::Number* g_l, Ipopt::Number* g_u)
{
// here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
// If desired, we could assert to make sure they are what we think they are.
//assert(n == x_->dim());
//assert(m == 0);
// Be on the safe side: unset all variable bounds
for (size_t i=0; i<n; i++) {
x_l[i] = -std::numeric_limits<double>::max();
x_u[i] = std::numeric_limits<double>::max();
}
for (int i=0; i<dim; i++) {
g_l[i] = g_u[i] = resultantForce_[i];
g_l[i+dim] = g_u[i+dim] = resultantTorque_[i];
}
return true;
}
// returns the initial point for the problem
template <class GridType>
bool PressureAverager<GridType>::
get_starting_point(Ipopt::Index n, bool init_x, Ipopt::Number* x,
bool init_z, Ipopt::Number* z_L, Ipopt::Number* z_U,
Ipopt::Index m, bool init_lambda, Ipopt::Number* lambda)
{
// Here, we assume we only have starting values for x, if you code
// your own NLP, you can provide starting values for the dual variables
// if you wish
assert(init_x == true);
assert(init_z == false);
assert(init_lambda == false);
// initialize to the given starting point
for (int i=0; i<n; i++)
x[i] = 0;
return true;
}
// returns the value of the objective function
template <class GridType>
bool PressureAverager<GridType>::
eval_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number& obj_value)
{
// std::cout << "x:" << std::endl;
// for (int i=0; i<n; i++)
// std::cout << x[i] << std::endl;
// Init return value
obj_value = 0;
////////////////////////////////////
// Compute x^T*A*x
////////////////////////////////////
for (int rowIdx=0; rowIdx<massMatrix_->N(); rowIdx++) {
const typename MatrixType::row_type& row = (*massMatrix_)[rowIdx];
typename MatrixType::row_type::ConstIterator cIt = row.begin();
typename MatrixType::row_type::ConstIterator cEndIt = row.end();
for (; cIt!=cEndIt; ++cIt)
for (int i=0; i<dim; i++)
obj_value += x[dim*rowIdx+i] * x[dim*cIt.index()+i] * (*cIt)[0][0];
}
// -b(x)
for (int i=0; i<nodalWeights_->size(); i++)
for (int j=0; j<dim; j++)
obj_value -= 2 * x[n-dim + j] * x[i*dim+j] * (*nodalWeights_)[i];
// += c^2 * \int 1 ds
for (int i=0; i<dim; i++)
obj_value += patchArea_ * (x[n-dim + i] * x[n-dim + i]);
//std::cout << "IPOPT Energy: " << obj_value << std::endl;
//exit(0);
return true;
}
// return the gradient of the objective function grad_{x} f(x)
template <class GridType>
bool PressureAverager<GridType>::
eval_grad_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number* grad_f)
{
//std::cout << "### eval_grad_f ###" << std::endl;
// \nabla J = A(x,.) - b(x)
for (int i=0; i<n; i++)
grad_f[i] = 0;
printmatrix(std::cout, *massMatrix_, "mass", "--");
for (int i=0; i<massMatrix_->N(); i++) {
const typename MatrixType::row_type& row = (*massMatrix_)[i];
typename MatrixType::row_type::ConstIterator cIt = row.begin();
typename MatrixType::row_type::ConstIterator cEndIt = row.end();
for (; cIt!=cEndIt; ++cIt)
for (int j=0; j<dim; j++)
grad_f[i*dim+j] += 2 * (*cIt)[0][0] * x[cIt.index()*dim+j];
for (int j=0; j<dim; j++)
grad_f[i*dim+j] -= 2 * x[n-dim+j] * (*nodalWeights_)[i];
}
for (int i=0; i<dim; i++) {
for (int j=0; j<nodalWeights_->size(); j++)
grad_f[n-dim+i] -= 2* (*nodalWeights_)[j]*x[j*dim+i];
grad_f[n-dim+i] += 2*x[n-dim+i]*patchArea_;
}
for (int i=0; i<n; i++) {
std::cout << "x = " << x[i] << std::endl;
std::cout << "grad = " << grad_f[i] << std::endl;
}
return true;
}
// return the value of the constraints: g(x)
template <class GridType>
bool PressureAverager<GridType>::
eval_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Index m, Ipopt::Number* g)
{
for (int i=0; i<m; i++) {
// init
g[i] = 0;
const RowType& jacobianRow = (*constraintJacobian_)[i];
for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt)
if ( (*cIt)[0][0] > jacobianCutoff_ )
g[i] += (*cIt)[0][0] * x[cIt.index()];
}
return true;
}
// return the structure or values of the jacobian
template <class GridType>
bool PressureAverager<GridType>::
eval_jac_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
Ipopt::Index m, Ipopt::Index nele_jac, Ipopt::Index* iRow, Ipopt::Index *jCol,
Ipopt::Number* values)
{
int idx = 0;
if (values==NULL) {
for (int i=0; i<m; i++) {
const RowType& jacobianRow = (*constraintJacobian_)[i];
for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt) {
if ( (*cIt)[0][0] > jacobianCutoff_ ) {
iRow[idx] = i;
jCol[idx] = cIt.index();
idx++;
}
}
}
} else {
for (int i=0; i<m; i++) {
const RowType& jacobianRow = (*constraintJacobian_)[i];
for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt)
if ( (*cIt)[0][0] > jacobianCutoff_ )
values[idx++] = (*cIt)[0][0];
}
}
return true;
}
//return the structure or values of the hessian
template <class GridType>
bool PressureAverager<GridType>::
eval_h(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
Ipopt::Number obj_factor, Ipopt::Index m, const Ipopt::Number* lambda,
bool new_lambda, Ipopt::Index nele_hess, Ipopt::Index* iRow,
Ipopt::Index* jCol, Ipopt::Number* values)
{
// We are using a quasi-Hessian approximation
return false;
}
template <class GridType>
void PressureAverager<GridType>::
finalize_solution(Ipopt::SolverReturn status,
Ipopt::Index n, const Ipopt::Number* x, const Ipopt::Number* z_L, const Ipopt::Number* z_U,
Ipopt::Index m, const Ipopt::Number* g, const Ipopt::Number* lambda,
Ipopt::Number obj_value,
const Ipopt::IpoptData* ip_data,
Ipopt::IpoptCalculatedQuantities* ip_cq)
{
x_->resize(patch_->numVertices());
for (int i=0; i<x_->size(); i++)
for (int j=0; j<dim; j++)
(*x_)[i][j] = x[i*dim+j];
std::cout << "Closest constant: ";// << x[n-dim] << " " << x[n-dim+1] << " " << [x-dim+2] << std::endl;
}
// Given a resultant force and torque (from a rod problem), this method computes the corresponding
// Neumann data for a 3d elasticity problem.
template <class GridType>
void computeAveragePressureIPOpt(const Dune::FieldVector<double,GridType::dimension>& resultantForce,
const Dune::FieldVector<double,GridType::dimension>& resultantTorque,
const BoundaryPatch<GridType>& interface,
const Configuration& crossSection,
Dune::BlockVector<Dune::FieldVector<double, GridType::dimension> >& pressure)
{
const GridType& grid = interface.getGrid();
const int level = interface.level();
const typename GridType::Traits::LevelIndexSet& indexSet = grid.levelIndexSet(level);
const int dim = GridType::dimension;
typedef typename GridType::ctype ctype;
typedef double field_type;
typedef typename GridType::template Codim<dim>::LevelIterator VertexIterator;
// Create the matrix of constraints
Dune::BCRSMatrix<Dune::FieldMatrix<field_type,1,1> > matrix(2*dim, dim*interface.numVertices(),
Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >::random);
for (int i=0; i<dim; i++) {
matrix.setrowsize(i, interface.numVertices());
matrix.setrowsize(i+dim, dim*interface.numVertices());
}
matrix.endrowsizes();
for (int i=0; i<dim; i++)
for (int j=0; j<interface.numVertices(); j++)
matrix.addindex(i, dim*j+i);
for (int i=0; i<dim; i++)
for (int j=0; j<dim*interface.numVertices(); j++)
matrix.addindex(i+dim, j);
matrix.endindices();
matrix = 0;
// Create the surface mass matrix
Dune::BCRSMatrix<Dune::FieldMatrix<field_type,1,1> > massMatrix;
assembleSurfaceMassMatrix<GridType,1>(interface, massMatrix);
// Make global-to-local array
std::vector<int> globalToLocal;
interface.makeGlobalToLocal(globalToLocal);
// Make array of nodal weights
Dune::BlockVector<Dune::FieldVector<double,1> > nodalWeights(interface.numVertices());
nodalWeights = 0;
typename GridType::template Codim<0>::LevelIterator eIt = indexSet.template begin<0,Dune::All_Partition>();
typename GridType::template Codim<0>::LevelIterator eEndIt = indexSet.template end<0,Dune::All_Partition>();
for (; eIt!=eEndIt; ++eIt) {
typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nIt = eIt->ilevelbegin();
typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nEndIt = eIt->ilevelend();
for (; nIt!=nEndIt; ++nIt) {
if (!interface.contains(*eIt,nIt))
continue;
const Dune::LagrangeShapeFunctionSet<ctype, field_type, dim-1>& baseSet
= Dune::LagrangeShapeFunctions<ctype, field_type, dim-1>::general(nIt.intersectionGlobal().type(),1);
const Dune::ReferenceElement<double,dim>& refElement = Dune::ReferenceElements<double, dim>::general(eIt->type());
// four rows because a face may have no more than four vertices
Dune::FieldVector<double,4> mu(0);
Dune::FieldVector<double,3> mu_tilde[4][3];
for (int i=0; i<4; i++)
for (int j=0; j<3; j++)
mu_tilde[i][j] = 0;
for (int i=0; i<nIt.intersectionGlobal().corners(); i++) {
const Dune::QuadratureRule<double, dim-1>& quad
= Dune::QuadratureRules<double, dim-1>::rule(nIt.intersectionGlobal().type(), dim-1);
for (size_t qp=0; qp<quad.size(); qp++) {
// Local position of the quadrature point
const Dune::FieldVector<double,dim-1>& quadPos = quad[qp].position();
const double integrationElement = nIt.intersectionGlobal().integrationElement(quadPos);
// \mu_i = \int_t \varphi_i \ds
mu[i] += quad[qp].weight() * integrationElement * baseSet[i].evaluateFunction(0,quadPos);
// \tilde{\mu}_i^j = \int_t \varphi_i \times (x - x_0) \ds
Dune::FieldVector<double,dim> worldPos = nIt.intersectionGlobal().global(quadPos);
for (int j=0; j<dim; j++) {
// Vector-valued basis function
Dune::FieldVector<double,dim> phi_i(0);
phi_i[j] = baseSet[i].evaluateFunction(0,quadPos);
mu_tilde[i][j].axpy(quad[qp].weight() * integrationElement,
crossProduct(worldPos-crossSection.r, phi_i));
}
}
}
// Set up matrix
for (int i=0; i<baseSet.size(); i++) {
int faceIdxi = refElement.subEntity(nIt.numberInSelf(), 1, i, dim);
int subIndex = globalToLocal[indexSet.template subIndex<dim>(*eIt, faceIdxi)];
nodalWeights[subIndex] += mu[i];
for (int j=0; j<dim; j++)
matrix[j][subIndex*dim+j] += mu[i];
for (int j=0; j<3; j++)
for (int k=0; k<3; k++)
matrix[dim+k][dim*subIndex+j] += mu_tilde[i][j][k];
}
}
}
//printmatrix(std::cout, matrix, "jacobian", "--");
//printmatrix(std::cout, massMatrix, "mass", "--");
// /////////////////////////////////////////////////////////////////////////////////////
// Set up and start the interior-point solver
// /////////////////////////////////////////////////////////////////////////////////////
// Create a new instance of IpoptApplication
Ipopt::SmartPtr<Ipopt::IpoptApplication> app = new Ipopt::IpoptApplication();
// Change some options
app->Options()->SetNumericValue("tol", 1e-8);
app->Options()->SetIntegerValue("max_iter", 20);
app->Options()->SetStringValue("mu_strategy", "adaptive");
app->Options()->SetStringValue("output_file", "ipopt.out");
app->Options()->SetStringValue("hessian_approximation", "limited-memory");
// Intialize the IpoptApplication and process the options
Ipopt::ApplicationReturnStatus status;
status = app->Initialize();
if (status != Ipopt::Solve_Succeeded)
DUNE_THROW(SolverError, "Error during IPOpt initialization!");
// Ask Ipopt to solve the problem
Dune::BlockVector<Dune::FieldVector<double,dim> > localPressure;
Ipopt::SmartPtr<Ipopt::TNLP> defectSolverSmart = new PressureAverager<GridType>(&interface,
&localPressure,
resultantForce,
resultantTorque,
&massMatrix,
&nodalWeights,
&matrix);
status = app->OptimizeTNLP(defectSolverSmart);
if (status != Ipopt::Solve_Succeeded)
DUNE_THROW(SolverError, "Solving the defect problem failed!");
// //////////////////////////////////////////////////////////////////////////////
// Get result
// //////////////////////////////////////////////////////////////////////////////
// set up output array
pressure.resize(indexSet.size(dim));
pressure = 0;
for (size_t i=0; i<globalToLocal.size(); i++)
if (globalToLocal[i]>=0)
pressure[i] = localPressure[globalToLocal[i]];
// /////////////////////////////////////////////////////////////////////////////////////
// Compute the overall force and torque to see whether the preceding code is correct
// /////////////////////////////////////////////////////////////////////////////////////
#if 1
Dune::FieldVector<double,3> outputForce(0), outputTorque(0);
eIt = indexSet.template begin<0,Dune::All_Partition>();
eEndIt = indexSet.template end<0,Dune::All_Partition>();
for (; eIt!=eEndIt; ++eIt) {
typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nIt = eIt->ilevelbegin();
typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nEndIt = eIt->ilevelend();
for (; nIt!=nEndIt; ++nIt) {
if (!interface.contains(*eIt,nIt))
continue;
const Dune::LagrangeShapeFunctionSet<double, double, dim-1>& baseSet
= Dune::LagrangeShapeFunctions<double, double, dim-1>::general(nIt.intersectionGlobal().type(),1);
const Dune::QuadratureRule<double, dim-1>& quad
= Dune::QuadratureRules<double, dim-1>::rule(nIt.intersectionGlobal().type(), dim-1);
const Dune::ReferenceElement<double,dim>& refElement = Dune::ReferenceElements<double, dim>::general(eIt->type());
for (size_t qp=0; qp<quad.size(); qp++) {
// Local position of the quadrature point
const Dune::FieldVector<double,dim-1>& quadPos = quad[qp].position();
const double integrationElement = nIt.intersectionGlobal().integrationElement(quadPos);
// Evaluate function
Dune::FieldVector<double,dim> localPressure(0);
for (size_t i=0; i<baseSet.size(); i++) {
int faceIdxi = refElement.subEntity(nIt.numberInSelf(), 1, i, dim);
int subIndex = indexSet.template subIndex<dim>(*eIt, faceIdxi);
localPressure.axpy(baseSet[i].evaluateFunction(0,quadPos),
pressure[subIndex]);
}
// Sum up the total force
outputForce.axpy(quad[qp].weight()*integrationElement, localPressure);
// Sum up the total torque \int (x - x_0) \times f dx
Dune::FieldVector<double,dim> worldPos = nIt.intersectionGlobal().global(quadPos);
outputTorque.axpy(quad[qp].weight()*integrationElement,
crossProduct(worldPos - crossSection.r, localPressure));
}
}
}
outputForce -= resultantForce;
outputTorque -= resultantTorque;
assert( outputForce.infinity_norm() < 1e-6 );
assert( outputTorque.infinity_norm() < 1e-6 );
// std::cout << "Output force: " << outputForce << std::endl;
// std::cout << "Output torque: " << outputTorque << " " << resultantTorque[0]/outputTorque[0] << std::endl;
#endif
}
// Given a resultant force and torque (from a rod problem), this method computes the corresponding // Given a resultant force and torque (from a rod problem), this method computes the corresponding
// Neumann data for a 3d elasticity problem. // Neumann data for a 3d elasticity problem.
template <class GridType> template <class GridType>
...@@ -145,6 +791,12 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>& ...@@ -145,6 +791,12 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>&
b(i+3) = resultantTorque[i] * segmentArea; b(i+3) = resultantTorque[i] * segmentArea;
} }
for (int i=0; i<6; i++) {
for (int j=0; j<3*baseSet.size(); j++)
std::cout << matrix(i,j) << " ";
std::cout << std::endl;
}
LaLinearSolve(matrix, u, b); LaLinearSolve(matrix, u, b);
#endif #endif
// std::cout << b << std::endl; // std::cout << b << std::endl;
...@@ -224,6 +876,8 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>& ...@@ -224,6 +876,8 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>&
} }
template <class GridType> template <class GridType>
void averageSurfaceDGFunction(const GridType& grid, void averageSurfaceDGFunction(const GridType& grid,
const Dune::BlockVector<Dune::FieldVector<double,GridType::dimension> >& dgFunction, const Dune::BlockVector<Dune::FieldVector<double,GridType::dimension> >& dgFunction,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment