Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
77bdda4d
Commit
77bdda4d
authored
17 years ago
by
Oliver Sander
Committed by
sander@PCPOOL.MI.FU-BERLIN.DE
17 years ago
Browse files
Options
Downloads
Patches
Plain Diff
snapshot commit: add new method to compute average pressure by a minimization scheme
[[Imported from SVN: r2036]]
parent
9f05df64
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/averageinterface.hh
+654
-0
654 additions, 0 deletions
src/averageinterface.hh
with
654 additions
and
0 deletions
src/averageinterface.hh
+
654
−
0
View file @
77bdda4d
...
@@ -6,10 +6,656 @@
...
@@ -6,10 +6,656 @@
#include
<dune/ag-common/dgindexset.hh>
#include
<dune/ag-common/dgindexset.hh>
#include
<dune/ag-common/crossproduct.hh>
#include
<dune/ag-common/crossproduct.hh>
#include
<dune/ag-common/surfmassmatrix.hh>
#include
"svd.hh"
#include
"svd.hh"
#include
"lapackpp.h"
#include
"lapackpp.h"
#undef max
#undef max
template
<
class
GridType
>
class
PressureAverager
:
public
Ipopt
::
TNLP
{
typedef
double
field_type
;
typedef
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>
MatrixType
;
typedef
typename
MatrixType
::
row_type
RowType
;
enum
{
dim
=
GridType
::
dimension
};
public
:
/** \brief Constructor */
PressureAverager
(
const
BoundaryPatch
<
GridType
>*
patch
,
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
dim
>
>*
result
,
const
Dune
::
FieldVector
<
double
,
dim
>&
resultantForce
,
const
Dune
::
FieldVector
<
double
,
dim
>&
resultantTorque
,
const
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>*
massMatrix
,
const
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
1
>
>*
nodalWeights
,
const
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>*
constraintJacobian
)
:
jacobianCutoff_
(
1e-8
),
patch_
(
patch
),
x_
(
result
),
massMatrix_
(
massMatrix
),
nodalWeights_
(
nodalWeights
),
constraintJacobian_
(
constraintJacobian
),
resultantForce_
(
resultantForce
),
resultantTorque_
(
resultantTorque
)
{
patchArea_
=
patch
->
area
();
}
/** default destructor */
virtual
~
PressureAverager
()
{};
/**@name Overloaded from TNLP */
//@{
/** Method to return some info about the nlp */
virtual
bool
get_nlp_info
(
Ipopt
::
Index
&
n
,
Ipopt
::
Index
&
m
,
Ipopt
::
Index
&
nnz_jac_g
,
Ipopt
::
Index
&
nnz_h_lag
,
IndexStyleEnum
&
index_style
);
/** Method to return the bounds for my problem */
virtual
bool
get_bounds_info
(
Ipopt
::
Index
n
,
Ipopt
::
Number
*
x_l
,
Ipopt
::
Number
*
x_u
,
Ipopt
::
Index
m
,
Ipopt
::
Number
*
g_l
,
Ipopt
::
Number
*
g_u
);
/** Method to return the starting point for the algorithm */
virtual
bool
get_starting_point
(
Ipopt
::
Index
n
,
bool
init_x
,
Ipopt
::
Number
*
x
,
bool
init_z
,
Ipopt
::
Number
*
z_L
,
Ipopt
::
Number
*
z_U
,
Ipopt
::
Index
m
,
bool
init_lambda
,
Ipopt
::
Number
*
lambda
);
/** Method to return the objective value */
virtual
bool
eval_f
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Number
&
obj_value
);
/** Method to return the gradient of the objective */
virtual
bool
eval_grad_f
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Number
*
grad_f
);
/** Method to return the constraint residuals */
virtual
bool
eval_g
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Index
m
,
Ipopt
::
Number
*
g
);
/** Method to return:
* 1) The structure of the jacobian (if "values" is NULL)
* 2) The values of the jacobian (if "values" is not NULL)
*/
virtual
bool
eval_jac_g
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Index
m
,
Ipopt
::
Index
nele_jac
,
Ipopt
::
Index
*
iRow
,
Ipopt
::
Index
*
jCol
,
Ipopt
::
Number
*
values
);
/** Method to return:
* 1) The structure of the hessian of the lagrangian (if "values" is NULL)
* 2) The values of the hessian of the lagrangian (if "values" is not NULL)
*/
virtual
bool
eval_h
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Number
obj_factor
,
Ipopt
::
Index
m
,
const
Ipopt
::
Number
*
lambda
,
bool
new_lambda
,
Ipopt
::
Index
nele_hess
,
Ipopt
::
Index
*
iRow
,
Ipopt
::
Index
*
jCol
,
Ipopt
::
Number
*
values
);
//@}
/** @name Solution Methods */
//@{
/** This method is called when the algorithm is complete so the TNLP can store/write the solution */
virtual
void
finalize_solution
(
Ipopt
::
SolverReturn
status
,
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
const
Ipopt
::
Number
*
z_L
,
const
Ipopt
::
Number
*
z_U
,
Ipopt
::
Index
m
,
const
Ipopt
::
Number
*
g
,
const
Ipopt
::
Number
*
lambda
,
Ipopt
::
Number
obj_value
,
const
Ipopt
::
IpoptData
*
ip_data
,
Ipopt
::
IpoptCalculatedQuantities
*
ip_cq
);
//@}
// /////////////////////////////////
// Data
// /////////////////////////////////
/** \brief All entries in the constraint Jacobian smaller than the value
here are removed. This increases stability.
*/
const
double
jacobianCutoff_
;
const
BoundaryPatch
<
GridType
>*
patch_
;
double
patchArea_
;
const
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>*
massMatrix_
;
const
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
1
>
>*
nodalWeights_
;
const
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>*
constraintJacobian_
;
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
dim
>
>*
x_
;
Dune
::
FieldVector
<
double
,
dim
>
resultantForce_
;
Dune
::
FieldVector
<
double
,
dim
>
resultantTorque_
;
private
:
/**@name Methods to block default compiler methods.
*/
//@{
// PressureAverager();
PressureAverager
(
const
PressureAverager
&
);
PressureAverager
&
operator
=
(
const
PressureAverager
&
);
//@}
};
// returns the size of the problem
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
get_nlp_info
(
Ipopt
::
Index
&
n
,
Ipopt
::
Index
&
m
,
Ipopt
::
Index
&
nnz_jac_g
,
Ipopt
::
Index
&
nnz_h_lag
,
IndexStyleEnum
&
index_style
)
{
// One variable for each vertex on the coupling boundary, and three for the closest constant field
n
=
patch_
->
numVertices
()
*
dim
+
dim
;
// prescribed total forces and moments
m
=
2
*
dim
;
// number of nonzeroes in the constraint Jacobian
// leave out the very small ones, as they create instabilities
nnz_jac_g
=
0
;
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
const
RowType
&
jacobianRow
=
(
*
constraintJacobian_
)[
i
];
for
(
typename
RowType
::
ConstIterator
cIt
=
jacobianRow
.
begin
();
cIt
!=
jacobianRow
.
end
();
++
cIt
)
if
(
(
*
cIt
)[
0
][
0
]
>
jacobianCutoff_
)
nnz_jac_g
++
;
}
// We only need the lower left corner of the Hessian (since it is symmetric)
if
(
!
massMatrix_
)
DUNE_THROW
(
SolverError
,
"No mass matrix has been supplied!"
);
nnz_h_lag
=
0
;
// use the C style indexing (0-based)
index_style
=
Ipopt
::
TNLP
::
C_STYLE
;
return
true
;
}
// returns the variable bounds
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
get_bounds_info
(
Ipopt
::
Index
n
,
Ipopt
::
Number
*
x_l
,
Ipopt
::
Number
*
x_u
,
Ipopt
::
Index
m
,
Ipopt
::
Number
*
g_l
,
Ipopt
::
Number
*
g_u
)
{
// here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
// If desired, we could assert to make sure they are what we think they are.
//assert(n == x_->dim());
//assert(m == 0);
// Be on the safe side: unset all variable bounds
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
{
x_l
[
i
]
=
-
std
::
numeric_limits
<
double
>::
max
();
x_u
[
i
]
=
std
::
numeric_limits
<
double
>::
max
();
}
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
g_l
[
i
]
=
g_u
[
i
]
=
resultantForce_
[
i
];
g_l
[
i
+
dim
]
=
g_u
[
i
+
dim
]
=
resultantTorque_
[
i
];
}
return
true
;
}
// returns the initial point for the problem
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
get_starting_point
(
Ipopt
::
Index
n
,
bool
init_x
,
Ipopt
::
Number
*
x
,
bool
init_z
,
Ipopt
::
Number
*
z_L
,
Ipopt
::
Number
*
z_U
,
Ipopt
::
Index
m
,
bool
init_lambda
,
Ipopt
::
Number
*
lambda
)
{
// Here, we assume we only have starting values for x, if you code
// your own NLP, you can provide starting values for the dual variables
// if you wish
assert
(
init_x
==
true
);
assert
(
init_z
==
false
);
assert
(
init_lambda
==
false
);
// initialize to the given starting point
for
(
int
i
=
0
;
i
<
n
;
i
++
)
x
[
i
]
=
0
;
return
true
;
}
// returns the value of the objective function
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
eval_f
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Number
&
obj_value
)
{
// std::cout << "x:" << std::endl;
// for (int i=0; i<n; i++)
// std::cout << x[i] << std::endl;
// Init return value
obj_value
=
0
;
////////////////////////////////////
// Compute x^T*A*x
////////////////////////////////////
for
(
int
rowIdx
=
0
;
rowIdx
<
massMatrix_
->
N
();
rowIdx
++
)
{
const
typename
MatrixType
::
row_type
&
row
=
(
*
massMatrix_
)[
rowIdx
];
typename
MatrixType
::
row_type
::
ConstIterator
cIt
=
row
.
begin
();
typename
MatrixType
::
row_type
::
ConstIterator
cEndIt
=
row
.
end
();
for
(;
cIt
!=
cEndIt
;
++
cIt
)
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
obj_value
+=
x
[
dim
*
rowIdx
+
i
]
*
x
[
dim
*
cIt
.
index
()
+
i
]
*
(
*
cIt
)[
0
][
0
];
}
// -b(x)
for
(
int
i
=
0
;
i
<
nodalWeights_
->
size
();
i
++
)
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
obj_value
-=
2
*
x
[
n
-
dim
+
j
]
*
x
[
i
*
dim
+
j
]
*
(
*
nodalWeights_
)[
i
];
// += c^2 * \int 1 ds
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
obj_value
+=
patchArea_
*
(
x
[
n
-
dim
+
i
]
*
x
[
n
-
dim
+
i
]);
//std::cout << "IPOPT Energy: " << obj_value << std::endl;
//exit(0);
return
true
;
}
// return the gradient of the objective function grad_{x} f(x)
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
eval_grad_f
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Number
*
grad_f
)
{
//std::cout << "### eval_grad_f ###" << std::endl;
// \nabla J = A(x,.) - b(x)
for
(
int
i
=
0
;
i
<
n
;
i
++
)
grad_f
[
i
]
=
0
;
printmatrix
(
std
::
cout
,
*
massMatrix_
,
"mass"
,
"--"
);
for
(
int
i
=
0
;
i
<
massMatrix_
->
N
();
i
++
)
{
const
typename
MatrixType
::
row_type
&
row
=
(
*
massMatrix_
)[
i
];
typename
MatrixType
::
row_type
::
ConstIterator
cIt
=
row
.
begin
();
typename
MatrixType
::
row_type
::
ConstIterator
cEndIt
=
row
.
end
();
for
(;
cIt
!=
cEndIt
;
++
cIt
)
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
grad_f
[
i
*
dim
+
j
]
+=
2
*
(
*
cIt
)[
0
][
0
]
*
x
[
cIt
.
index
()
*
dim
+
j
];
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
grad_f
[
i
*
dim
+
j
]
-=
2
*
x
[
n
-
dim
+
j
]
*
(
*
nodalWeights_
)[
i
];
}
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
for
(
int
j
=
0
;
j
<
nodalWeights_
->
size
();
j
++
)
grad_f
[
n
-
dim
+
i
]
-=
2
*
(
*
nodalWeights_
)[
j
]
*
x
[
j
*
dim
+
i
];
grad_f
[
n
-
dim
+
i
]
+=
2
*
x
[
n
-
dim
+
i
]
*
patchArea_
;
}
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
std
::
cout
<<
"x = "
<<
x
[
i
]
<<
std
::
endl
;
std
::
cout
<<
"grad = "
<<
grad_f
[
i
]
<<
std
::
endl
;
}
return
true
;
}
// return the value of the constraints: g(x)
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
eval_g
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Index
m
,
Ipopt
::
Number
*
g
)
{
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
// init
g
[
i
]
=
0
;
const
RowType
&
jacobianRow
=
(
*
constraintJacobian_
)[
i
];
for
(
typename
RowType
::
ConstIterator
cIt
=
jacobianRow
.
begin
();
cIt
!=
jacobianRow
.
end
();
++
cIt
)
if
(
(
*
cIt
)[
0
][
0
]
>
jacobianCutoff_
)
g
[
i
]
+=
(
*
cIt
)[
0
][
0
]
*
x
[
cIt
.
index
()];
}
return
true
;
}
// return the structure or values of the jacobian
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
eval_jac_g
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Index
m
,
Ipopt
::
Index
nele_jac
,
Ipopt
::
Index
*
iRow
,
Ipopt
::
Index
*
jCol
,
Ipopt
::
Number
*
values
)
{
int
idx
=
0
;
if
(
values
==
NULL
)
{
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
const
RowType
&
jacobianRow
=
(
*
constraintJacobian_
)[
i
];
for
(
typename
RowType
::
ConstIterator
cIt
=
jacobianRow
.
begin
();
cIt
!=
jacobianRow
.
end
();
++
cIt
)
{
if
(
(
*
cIt
)[
0
][
0
]
>
jacobianCutoff_
)
{
iRow
[
idx
]
=
i
;
jCol
[
idx
]
=
cIt
.
index
();
idx
++
;
}
}
}
}
else
{
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
const
RowType
&
jacobianRow
=
(
*
constraintJacobian_
)[
i
];
for
(
typename
RowType
::
ConstIterator
cIt
=
jacobianRow
.
begin
();
cIt
!=
jacobianRow
.
end
();
++
cIt
)
if
(
(
*
cIt
)[
0
][
0
]
>
jacobianCutoff_
)
values
[
idx
++
]
=
(
*
cIt
)[
0
][
0
];
}
}
return
true
;
}
//return the structure or values of the hessian
template
<
class
GridType
>
bool
PressureAverager
<
GridType
>::
eval_h
(
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
bool
new_x
,
Ipopt
::
Number
obj_factor
,
Ipopt
::
Index
m
,
const
Ipopt
::
Number
*
lambda
,
bool
new_lambda
,
Ipopt
::
Index
nele_hess
,
Ipopt
::
Index
*
iRow
,
Ipopt
::
Index
*
jCol
,
Ipopt
::
Number
*
values
)
{
// We are using a quasi-Hessian approximation
return
false
;
}
template
<
class
GridType
>
void
PressureAverager
<
GridType
>::
finalize_solution
(
Ipopt
::
SolverReturn
status
,
Ipopt
::
Index
n
,
const
Ipopt
::
Number
*
x
,
const
Ipopt
::
Number
*
z_L
,
const
Ipopt
::
Number
*
z_U
,
Ipopt
::
Index
m
,
const
Ipopt
::
Number
*
g
,
const
Ipopt
::
Number
*
lambda
,
Ipopt
::
Number
obj_value
,
const
Ipopt
::
IpoptData
*
ip_data
,
Ipopt
::
IpoptCalculatedQuantities
*
ip_cq
)
{
x_
->
resize
(
patch_
->
numVertices
());
for
(
int
i
=
0
;
i
<
x_
->
size
();
i
++
)
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
(
*
x_
)[
i
][
j
]
=
x
[
i
*
dim
+
j
];
std
::
cout
<<
"Closest constant: "
;
// << x[n-dim] << " " << x[n-dim+1] << " " << [x-dim+2] << std::endl;
}
// Given a resultant force and torque (from a rod problem), this method computes the corresponding
// Neumann data for a 3d elasticity problem.
template
<
class
GridType
>
void
computeAveragePressureIPOpt
(
const
Dune
::
FieldVector
<
double
,
GridType
::
dimension
>&
resultantForce
,
const
Dune
::
FieldVector
<
double
,
GridType
::
dimension
>&
resultantTorque
,
const
BoundaryPatch
<
GridType
>&
interface
,
const
Configuration
&
crossSection
,
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
GridType
::
dimension
>
>&
pressure
)
{
const
GridType
&
grid
=
interface
.
getGrid
();
const
int
level
=
interface
.
level
();
const
typename
GridType
::
Traits
::
LevelIndexSet
&
indexSet
=
grid
.
levelIndexSet
(
level
);
const
int
dim
=
GridType
::
dimension
;
typedef
typename
GridType
::
ctype
ctype
;
typedef
double
field_type
;
typedef
typename
GridType
::
template
Codim
<
dim
>
::
LevelIterator
VertexIterator
;
// Create the matrix of constraints
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
field_type
,
1
,
1
>
>
matrix
(
2
*
dim
,
dim
*
interface
.
numVertices
(),
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>::
random
);
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
matrix
.
setrowsize
(
i
,
interface
.
numVertices
());
matrix
.
setrowsize
(
i
+
dim
,
dim
*
interface
.
numVertices
());
}
matrix
.
endrowsizes
();
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
j
=
0
;
j
<
interface
.
numVertices
();
j
++
)
matrix
.
addindex
(
i
,
dim
*
j
+
i
);
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
j
=
0
;
j
<
dim
*
interface
.
numVertices
();
j
++
)
matrix
.
addindex
(
i
+
dim
,
j
);
matrix
.
endindices
();
matrix
=
0
;
// Create the surface mass matrix
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
field_type
,
1
,
1
>
>
massMatrix
;
assembleSurfaceMassMatrix
<
GridType
,
1
>
(
interface
,
massMatrix
);
// Make global-to-local array
std
::
vector
<
int
>
globalToLocal
;
interface
.
makeGlobalToLocal
(
globalToLocal
);
// Make array of nodal weights
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
1
>
>
nodalWeights
(
interface
.
numVertices
());
nodalWeights
=
0
;
typename
GridType
::
template
Codim
<
0
>
::
LevelIterator
eIt
=
indexSet
.
template
begin
<
0
,
Dune
::
All_Partition
>();
typename
GridType
::
template
Codim
<
0
>
::
LevelIterator
eEndIt
=
indexSet
.
template
end
<
0
,
Dune
::
All_Partition
>();
for
(;
eIt
!=
eEndIt
;
++
eIt
)
{
typename
GridType
::
template
Codim
<
0
>
::
Entity
::
LevelIntersectionIterator
nIt
=
eIt
->
ilevelbegin
();
typename
GridType
::
template
Codim
<
0
>
::
Entity
::
LevelIntersectionIterator
nEndIt
=
eIt
->
ilevelend
();
for
(;
nIt
!=
nEndIt
;
++
nIt
)
{
if
(
!
interface
.
contains
(
*
eIt
,
nIt
))
continue
;
const
Dune
::
LagrangeShapeFunctionSet
<
ctype
,
field_type
,
dim
-
1
>&
baseSet
=
Dune
::
LagrangeShapeFunctions
<
ctype
,
field_type
,
dim
-
1
>::
general
(
nIt
.
intersectionGlobal
().
type
(),
1
);
const
Dune
::
ReferenceElement
<
double
,
dim
>&
refElement
=
Dune
::
ReferenceElements
<
double
,
dim
>::
general
(
eIt
->
type
());
// four rows because a face may have no more than four vertices
Dune
::
FieldVector
<
double
,
4
>
mu
(
0
);
Dune
::
FieldVector
<
double
,
3
>
mu_tilde
[
4
][
3
];
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
mu_tilde
[
i
][
j
]
=
0
;
for
(
int
i
=
0
;
i
<
nIt
.
intersectionGlobal
().
corners
();
i
++
)
{
const
Dune
::
QuadratureRule
<
double
,
dim
-
1
>&
quad
=
Dune
::
QuadratureRules
<
double
,
dim
-
1
>::
rule
(
nIt
.
intersectionGlobal
().
type
(),
dim
-
1
);
for
(
size_t
qp
=
0
;
qp
<
quad
.
size
();
qp
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
double
,
dim
-
1
>&
quadPos
=
quad
[
qp
].
position
();
const
double
integrationElement
=
nIt
.
intersectionGlobal
().
integrationElement
(
quadPos
);
// \mu_i = \int_t \varphi_i \ds
mu
[
i
]
+=
quad
[
qp
].
weight
()
*
integrationElement
*
baseSet
[
i
].
evaluateFunction
(
0
,
quadPos
);
// \tilde{\mu}_i^j = \int_t \varphi_i \times (x - x_0) \ds
Dune
::
FieldVector
<
double
,
dim
>
worldPos
=
nIt
.
intersectionGlobal
().
global
(
quadPos
);
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
{
// Vector-valued basis function
Dune
::
FieldVector
<
double
,
dim
>
phi_i
(
0
);
phi_i
[
j
]
=
baseSet
[
i
].
evaluateFunction
(
0
,
quadPos
);
mu_tilde
[
i
][
j
].
axpy
(
quad
[
qp
].
weight
()
*
integrationElement
,
crossProduct
(
worldPos
-
crossSection
.
r
,
phi_i
));
}
}
}
// Set up matrix
for
(
int
i
=
0
;
i
<
baseSet
.
size
();
i
++
)
{
int
faceIdxi
=
refElement
.
subEntity
(
nIt
.
numberInSelf
(),
1
,
i
,
dim
);
int
subIndex
=
globalToLocal
[
indexSet
.
template
subIndex
<
dim
>(
*
eIt
,
faceIdxi
)];
nodalWeights
[
subIndex
]
+=
mu
[
i
];
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
matrix
[
j
][
subIndex
*
dim
+
j
]
+=
mu
[
i
];
for
(
int
j
=
0
;
j
<
3
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
matrix
[
dim
+
k
][
dim
*
subIndex
+
j
]
+=
mu_tilde
[
i
][
j
][
k
];
}
}
}
//printmatrix(std::cout, matrix, "jacobian", "--");
//printmatrix(std::cout, massMatrix, "mass", "--");
// /////////////////////////////////////////////////////////////////////////////////////
// Set up and start the interior-point solver
// /////////////////////////////////////////////////////////////////////////////////////
// Create a new instance of IpoptApplication
Ipopt
::
SmartPtr
<
Ipopt
::
IpoptApplication
>
app
=
new
Ipopt
::
IpoptApplication
();
// Change some options
app
->
Options
()
->
SetNumericValue
(
"tol"
,
1e-8
);
app
->
Options
()
->
SetIntegerValue
(
"max_iter"
,
20
);
app
->
Options
()
->
SetStringValue
(
"mu_strategy"
,
"adaptive"
);
app
->
Options
()
->
SetStringValue
(
"output_file"
,
"ipopt.out"
);
app
->
Options
()
->
SetStringValue
(
"hessian_approximation"
,
"limited-memory"
);
// Intialize the IpoptApplication and process the options
Ipopt
::
ApplicationReturnStatus
status
;
status
=
app
->
Initialize
();
if
(
status
!=
Ipopt
::
Solve_Succeeded
)
DUNE_THROW
(
SolverError
,
"Error during IPOpt initialization!"
);
// Ask Ipopt to solve the problem
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
dim
>
>
localPressure
;
Ipopt
::
SmartPtr
<
Ipopt
::
TNLP
>
defectSolverSmart
=
new
PressureAverager
<
GridType
>
(
&
interface
,
&
localPressure
,
resultantForce
,
resultantTorque
,
&
massMatrix
,
&
nodalWeights
,
&
matrix
);
status
=
app
->
OptimizeTNLP
(
defectSolverSmart
);
if
(
status
!=
Ipopt
::
Solve_Succeeded
)
DUNE_THROW
(
SolverError
,
"Solving the defect problem failed!"
);
// //////////////////////////////////////////////////////////////////////////////
// Get result
// //////////////////////////////////////////////////////////////////////////////
// set up output array
pressure
.
resize
(
indexSet
.
size
(
dim
));
pressure
=
0
;
for
(
size_t
i
=
0
;
i
<
globalToLocal
.
size
();
i
++
)
if
(
globalToLocal
[
i
]
>=
0
)
pressure
[
i
]
=
localPressure
[
globalToLocal
[
i
]];
// /////////////////////////////////////////////////////////////////////////////////////
// Compute the overall force and torque to see whether the preceding code is correct
// /////////////////////////////////////////////////////////////////////////////////////
#if 1
Dune
::
FieldVector
<
double
,
3
>
outputForce
(
0
),
outputTorque
(
0
);
eIt
=
indexSet
.
template
begin
<
0
,
Dune
::
All_Partition
>();
eEndIt
=
indexSet
.
template
end
<
0
,
Dune
::
All_Partition
>();
for
(;
eIt
!=
eEndIt
;
++
eIt
)
{
typename
GridType
::
template
Codim
<
0
>
::
Entity
::
LevelIntersectionIterator
nIt
=
eIt
->
ilevelbegin
();
typename
GridType
::
template
Codim
<
0
>
::
Entity
::
LevelIntersectionIterator
nEndIt
=
eIt
->
ilevelend
();
for
(;
nIt
!=
nEndIt
;
++
nIt
)
{
if
(
!
interface
.
contains
(
*
eIt
,
nIt
))
continue
;
const
Dune
::
LagrangeShapeFunctionSet
<
double
,
double
,
dim
-
1
>&
baseSet
=
Dune
::
LagrangeShapeFunctions
<
double
,
double
,
dim
-
1
>::
general
(
nIt
.
intersectionGlobal
().
type
(),
1
);
const
Dune
::
QuadratureRule
<
double
,
dim
-
1
>&
quad
=
Dune
::
QuadratureRules
<
double
,
dim
-
1
>::
rule
(
nIt
.
intersectionGlobal
().
type
(),
dim
-
1
);
const
Dune
::
ReferenceElement
<
double
,
dim
>&
refElement
=
Dune
::
ReferenceElements
<
double
,
dim
>::
general
(
eIt
->
type
());
for
(
size_t
qp
=
0
;
qp
<
quad
.
size
();
qp
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
double
,
dim
-
1
>&
quadPos
=
quad
[
qp
].
position
();
const
double
integrationElement
=
nIt
.
intersectionGlobal
().
integrationElement
(
quadPos
);
// Evaluate function
Dune
::
FieldVector
<
double
,
dim
>
localPressure
(
0
);
for
(
size_t
i
=
0
;
i
<
baseSet
.
size
();
i
++
)
{
int
faceIdxi
=
refElement
.
subEntity
(
nIt
.
numberInSelf
(),
1
,
i
,
dim
);
int
subIndex
=
indexSet
.
template
subIndex
<
dim
>(
*
eIt
,
faceIdxi
);
localPressure
.
axpy
(
baseSet
[
i
].
evaluateFunction
(
0
,
quadPos
),
pressure
[
subIndex
]);
}
// Sum up the total force
outputForce
.
axpy
(
quad
[
qp
].
weight
()
*
integrationElement
,
localPressure
);
// Sum up the total torque \int (x - x_0) \times f dx
Dune
::
FieldVector
<
double
,
dim
>
worldPos
=
nIt
.
intersectionGlobal
().
global
(
quadPos
);
outputTorque
.
axpy
(
quad
[
qp
].
weight
()
*
integrationElement
,
crossProduct
(
worldPos
-
crossSection
.
r
,
localPressure
));
}
}
}
outputForce
-=
resultantForce
;
outputTorque
-=
resultantTorque
;
assert
(
outputForce
.
infinity_norm
()
<
1e-6
);
assert
(
outputTorque
.
infinity_norm
()
<
1e-6
);
// std::cout << "Output force: " << outputForce << std::endl;
// std::cout << "Output torque: " << outputTorque << " " << resultantTorque[0]/outputTorque[0] << std::endl;
#endif
}
// Given a resultant force and torque (from a rod problem), this method computes the corresponding
// Given a resultant force and torque (from a rod problem), this method computes the corresponding
// Neumann data for a 3d elasticity problem.
// Neumann data for a 3d elasticity problem.
template
<
class
GridType
>
template
<
class
GridType
>
...
@@ -145,6 +791,12 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>&
...
@@ -145,6 +791,12 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>&
b
(
i
+
3
)
=
resultantTorque
[
i
]
*
segmentArea
;
b
(
i
+
3
)
=
resultantTorque
[
i
]
*
segmentArea
;
}
}
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
for
(
int
j
=
0
;
j
<
3
*
baseSet
.
size
();
j
++
)
std
::
cout
<<
matrix
(
i
,
j
)
<<
" "
;
std
::
cout
<<
std
::
endl
;
}
LaLinearSolve
(
matrix
,
u
,
b
);
LaLinearSolve
(
matrix
,
u
,
b
);
#endif
#endif
// std::cout << b << std::endl;
// std::cout << b << std::endl;
...
@@ -224,6 +876,8 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>&
...
@@ -224,6 +876,8 @@ void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>&
}
}
template
<
class
GridType
>
template
<
class
GridType
>
void
averageSurfaceDGFunction
(
const
GridType
&
grid
,
void
averageSurfaceDGFunction
(
const
GridType
&
grid
,
const
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
GridType
::
dimension
>
>&
dgFunction
,
const
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
GridType
::
dimension
>
>&
dgFunction
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment