Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
78ddc95c
Commit
78ddc95c
authored
11 years ago
by
Oliver Sander
Committed by
sander
11 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Test Cosserat energy, and use the official dune-gfe local assemblers to test
[[Imported from SVN: r9406]]
parent
ec5967cf
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test/adolctest.cc
+68
-112
68 additions, 112 deletions
test/adolctest.cc
with
68 additions
and
112 deletions
test/adolctest.cc
+
68
−
112
View file @
78ddc95c
...
...
@@ -5,39 +5,18 @@
// gradient(.) and hessian(.)
#include
<adolc/taping.h>
// use of taping
#undef overwrite // stupid: ADOL-C sets this to 1, so the name cannot be used
#include
<iostream>
#include
<vector>
#include
<cstdlib>
#include
<math.h>
namespace
std
{
adouble
max
(
adouble
a
,
adouble
b
)
{
return
fmax
(
a
,
b
);
}
adouble
sqrt
(
adouble
a
)
{
return
sqrt
(
a
);
}
adouble
abs
(
adouble
a
)
{
return
fabs
(
a
);
}
#include
<dune/gfe/adolcnamespaceinjections.hh>
adouble
pow
(
const
adouble
&
a
,
const
adouble
&
b
)
{
return
pow
(
a
,
b
);
}
bool
isnan
(
adouble
a
)
{
return
std
::
isnan
(
a
.
value
());
}
bool
isinf
(
adouble
a
)
{
return
std
::
isinf
(
a
.
value
());
}
}
#include
<dune/common/parametertree.hh>
#include
<dune/common/parametertreeparser.hh>
#include
<dune/grid/yaspgrid.hh>
#include
<dune/geometry/quadraturerules.hh>
...
...
@@ -47,6 +26,7 @@ namespace std
#include
<dune/gfe/realtuple.hh>
#include
<dune/gfe/localgeodesicfefunction.hh>
#include
<dune/gfe/harmonicenergystiffness.hh>
#include
<dune/gfe/cosseratenergystiffness.hh>
using
namespace
Dune
;
...
...
@@ -59,104 +39,51 @@ energy(const typename GridView::template Codim<0>::Entity& element,
const
std
::
vector
<
TargetSpace
>&
localPureSolution
)
{
double
pureEnergy
;
typedef
RealTuple
<
adouble
,
1
>
ADTargetSpace
;
std
::
vector
<
ADTargetSpace
>
localSolution
(
localPureSolution
.
size
());
typedef
typename
TargetSpace
::
template
rebind
<
adouble
>
::
other
ATargetSpace
;
std
::
vector
<
ATargetSpace
>
localSolution
(
localPureSolution
.
size
());
#if 0
HarmonicEnergyLocalStiffness<GridView,LocalFiniteElement,ATargetSpace> assembler;
#else
ParameterTree
parameterSet
;
ParameterTreeParser
::
readINITree
(
"../cosserat-continuum.parset"
,
parameterSet
);
trace_on
(
1
);
adouble
energy
=
0
;
for
(
size_t
i
=
0
;
i
<
localSolution
.
size
();
i
++
)
localSolution
[
i
]
<<=
localPureSolution
[
i
];
energy
=
assembler
.
energy
(
element
,
localFiniteElement
,
localSolution
);
energy
>>=
pureEnergy
;
trace_off
(
1
);
const
ParameterTree
&
materialParameters
=
parameterSet
.
sub
(
"materialParameters"
);
std
::
cout
<<
"Material parameters:"
<<
std
::
endl
;
materialParameters
.
report
();
return
pureEnergy
;
}
CosseratEnergyLocalStiffness
<
GridView
,
LocalFiniteElement
,
3
,
adouble
>
assembler
(
materialParameters
,
NULL
,
NULL
);
#endif
#if 0
template <class GridView, class LocalFiniteElement, class TargetSpace>
double
energy(const typename GridView::template Codim<0>::Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localPureSolution)
{
typedef RealTuple<adouble,1> ADTargetSpace;
std::vector<ADTargetSpace> localSolution(localPureSolution.size());
trace_on
(
1
);
for (size_t i=0; i<localSolution.size(); i++)
localSolution[i] <<= localPureSolution[i];
assert(element.type() == localFiniteElement.type());
static const int gridDim = GridView::dimension;
typedef typename GridView::template Codim<0>::Entity::Geometry Geometry;
double pureEnergy;
adouble
energy
=
0
;
LocalGeodesicFEFunction<gridDim, adouble, LocalFiniteElement, ADTargetSpace> localGeodesicFEFunction(localFiniteElement,
localSolution);
int quadOrder = (element.type().isSimplex()) ? (localFiniteElement.localBasis().order()-1) * 2
: localFiniteElement.localBasis().order() * 2 * gridDim;
const Dune::QuadratureRule<double, gridDim>& quad
= Dune::QuadratureRules<double, gridDim>::rule(element.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<double,gridDim>& quadPos = quad[pt].position();
const double integrationElement = element.geometry().integrationElement(quadPos);
const typename Geometry::JacobianInverseTransposed& jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(quadPos);
double weight = quad[pt].weight() * integrationElement;
// The derivative of the local function defined on the reference element
Dune::FieldMatrix<adouble, TargetSpace::EmbeddedTangentVector::dimension, gridDim> referenceDerivative = localGeodesicFEFunction.evaluateDerivative(quadPos);
// The derivative of the function defined on the actual element
Dune::FieldMatrix<adouble, TargetSpace::EmbeddedTangentVector::dimension, gridDim> derivative(0);
for (size_t comp=0; comp<referenceDerivative.N(); comp++)
jacobianInverseTransposed.umv(referenceDerivative[comp], derivative[comp]);
// Add the local energy density
// The Frobenius norm is the correct norm here if the metric of TargetSpace is the identity.
// (And if the metric of the domain space is the identity, which it always is here.)
energy += weight * derivative.frobenius_norm2();
for
(
size_t
i
=
0
;
i
<
localSolution
.
size
();
i
++
)
localSolution
[
i
]
<<=
localPureSolution
[
i
];
}
energy
=
assembler
.
energy
(
element
,
localFiniteElement
,
localSolution
);
energy *= 0.5;
energy
>>=
pureEnergy
;
trace_off
(
1
);
size_t
tape_stats
[
STAT_SIZE
];
tapestats
(
1
,
tape_stats
);
// reading of tape statistics
cout
<<
"maxlive "
<<
tape_stats
[
NUM_MAX_LIVES
]
<<
"
\n
"
;
// ..... print other tape stats
return
pureEnergy
;
}
#endif
/****************************************************************************/
/* MAIN PROGRAM */
int
main
()
{
size_t
n
=
4
;
size_t
n
Dofs
=
4
;
//std::cout << className< decltype(adouble() / double()) >() << std::endl;
...
...
@@ -169,33 +96,62 @@ int main() {
typedef
Q1LocalFiniteElement
<
double
,
double
,
dim
>
LocalFE
;
LocalFE
localFiniteElement
;
typedef
RealTuple
<
double
,
1
>
TargetSpace
;
std
::
vector
<
TargetSpace
>
localSolution
(
n
);
localSolution
[
0
]
=
TargetSpace
(
0
);
localSolution
[
1
]
=
TargetSpace
(
0
);
localSolution
[
2
]
=
TargetSpace
(
1
);
localSolution
[
3
]
=
TargetSpace
(
1
);
//typedef RealTuple<double,1> TargetSpace;
typedef
RigidBodyMotion
<
double
,
3
>
TargetSpace
;
std
::
vector
<
TargetSpace
>
localSolution
(
nDofs
);
FieldVector
<
double
,
7
>
identity
(
0
);
identity
[
6
]
=
1
;
for
(
auto
vIt
=
grid
.
leafbegin
<
dim
>
();
vIt
!=
grid
.
leafend
<
dim
>
();
++
vIt
)
{
localSolution
[
grid
.
leafView
().
indexSet
().
index
(
*
vIt
)].
r
=
0
;
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
localSolution
[
grid
.
leafView
().
indexSet
().
index
(
*
vIt
)].
r
[
i
]
=
2
*
vIt
->
geometry
().
corner
(
0
)[
i
];
localSolution
[
grid
.
leafView
().
indexSet
().
index
(
*
vIt
)].
q
=
Rotation
<
double
,
3
>::
identity
();
}
for
(
size_t
i
=
0
;
i
<
localSolution
.
size
();
i
++
)
std
::
cout
<<
localSolution
[
i
]
<<
std
::
endl
;
double
laplaceEnergy
=
energy
<
GridType
::
LeafGridView
,
LocalFE
,
TargetSpace
>
(
*
grid
.
leafbegin
<
0
>
(),
localFiniteElement
,
localSolution
);
std
::
cout
<<
"Laplace energy: "
<<
laplaceEnergy
<<
std
::
endl
;
std
::
vector
<
double
>
xp
(
n
);
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
xp
[
i
]
=
1
;
size_t
nDoubles
=
nDofs
*
sizeof
(
TargetSpace
)
/
sizeof
(
double
);
std
::
vector
<
double
>
xp
(
nDoubles
);
int
idx
=
0
;
for
(
size_t
i
=
0
;
i
<
nDofs
;
i
++
)
for
(
size_t
j
=
0
;
j
<
sizeof
(
TargetSpace
)
/
sizeof
(
double
);
j
++
)
xp
[
idx
++
]
=
localSolution
[
i
].
globalCoordinates
()[
j
];
// Compute gradient
double
*
g
=
new
double
[
nDoubles
];
gradient
(
1
,
nDoubles
,
xp
.
data
(),
g
);
// gradient evaluation
int
idx2
=
0
;
for
(
size_t
i
=
0
;
i
<
nDofs
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
sizeof
(
TargetSpace
)
/
sizeof
(
double
);
j
++
)
{
std
::
cout
<<
g
[
idx2
++
]
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
}
//exit(0);
double
**
H
=
(
double
**
)
malloc
(
n
*
sizeof
(
double
*
));
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
// Compute Hessian
double
**
H
=
(
double
**
)
malloc
(
nDoubles
*
sizeof
(
double
*
));
for
(
size_t
i
=
0
;
i
<
nDoubles
;
i
++
)
H
[
i
]
=
(
double
*
)
malloc
((
i
+
1
)
*
sizeof
(
double
));
hessian
(
1
,
n
,
xp
.
data
(),
H
);
// H equals (n-1)g since g is
hessian
(
1
,
n
Doubles
,
xp
.
data
(),
H
);
// H equals (n-1)g since g is
std
::
cout
<<
"Hessian:"
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
n
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
n
;
j
++
)
{
for
(
size_t
i
=
0
;
i
<
n
Doubles
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
n
Doubles
;
j
++
)
{
double
value
=
(
j
<=
i
)
?
H
[
i
][
j
]
:
H
[
j
][
i
];
std
::
cout
<<
value
<<
" "
;
}
std
::
cout
<<
std
::
endl
;
exit
(
0
);
}
// Get gradient
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment