Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
8830565c
Commit
8830565c
authored
10 years ago
by
Oliver Sander
Committed by
sander
10 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Major cleanup and decrufting
[[Imported from SVN: r10114]]
parent
05a013e0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dune/gfe/henckyenergy.hh
+15
-241
15 additions, 241 deletions
dune/gfe/henckyenergy.hh
with
15 additions
and
241 deletions
dune/gfe/henckyenergy.hh
+
15
−
241
View file @
8830565c
...
@@ -2,6 +2,8 @@
...
@@ -2,6 +2,8 @@
#define DUNE_GFE_HENCKYENERGY_HH
#define DUNE_GFE_HENCKYENERGY_HH
#include
<dune/common/fmatrix.hh>
#include
<dune/common/fmatrix.hh>
#include
<dune/common/fmatrixev.hh>
#include
<dune/geometry/quadraturerules.hh>
#include
<dune/geometry/quadraturerules.hh>
#include
<dune/fufem/functions/virtualgridfunction.hh>
#include
<dune/fufem/functions/virtualgridfunction.hh>
...
@@ -11,12 +13,9 @@
...
@@ -11,12 +13,9 @@
#include
<dune/gfe/localfestiffness.hh>
#include
<dune/gfe/localfestiffness.hh>
#include
<dune/gfe/localgeodesicfefunction.hh>
#include
<dune/gfe/localgeodesicfefunction.hh>
#include
<dune/gfe/realtuple.hh>
#include
<dune/gfe/realtuple.hh>
#include
<dune/gfe/eigenvalues.hh>
namespace
Dune
{
namespace
Dune
{
namespace
Fufem
{
template
<
class
GridView
,
class
LocalFiniteElement
,
class
field_type
=
double
>
template
<
class
GridView
,
class
LocalFiniteElement
,
class
field_type
=
double
>
class
HenckyEnergy
class
HenckyEnergy
:
public
LocalFEStiffness
<
GridView
,
LocalFiniteElement
,
std
::
vector
<
Dune
::
FieldVector
<
field_type
,
3
>
>
>
:
public
LocalFEStiffness
<
GridView
,
LocalFiniteElement
,
std
::
vector
<
Dune
::
FieldVector
<
field_type
,
3
>
>
>
...
@@ -48,8 +47,7 @@ public: // for testing
...
@@ -48,8 +47,7 @@ public: // for testing
/** \brief Assemble the energy for a single element */
/** \brief Assemble the energy for a single element */
field_type
energy
(
const
Entity
&
e
,
field_type
energy
(
const
Entity
&
e
,
const
LocalFiniteElement
&
localFiniteElement
,
const
LocalFiniteElement
&
localFiniteElement
,
const
std
::
vector
<
Dune
::
FieldVector
<
field_type
,
gridDim
>
>&
localConfiguration
,
const
std
::
vector
<
Dune
::
FieldVector
<
field_type
,
gridDim
>
>&
localConfiguration
)
const
;
const
std
::
vector
<
Dune
::
FieldVector
<
double
,
gridDim
>
>&
localPointLoads
)
const
;
/** \brief Lame constants */
/** \brief Lame constants */
double
mu_
,
lambda_
;
double
mu_
,
lambda_
;
...
@@ -66,17 +64,13 @@ field_type
...
@@ -66,17 +64,13 @@ field_type
HenckyEnergy
<
GridView
,
LocalFiniteElement
,
field_type
>::
HenckyEnergy
<
GridView
,
LocalFiniteElement
,
field_type
>::
energy
(
const
Entity
&
element
,
energy
(
const
Entity
&
element
,
const
LocalFiniteElement
&
localFiniteElement
,
const
LocalFiniteElement
&
localFiniteElement
,
const
std
::
vector
<
Dune
::
FieldVector
<
field_type
,
gridDim
>
>&
localConfiguration
,
const
std
::
vector
<
Dune
::
FieldVector
<
field_type
,
gridDim
>
>&
localConfiguration
)
const
const
std
::
vector
<
Dune
::
FieldVector
<
double
,
gridDim
>
>&
localPointLoads
)
const
{
{
assert
(
element
.
type
()
==
localFiniteElement
.
type
());
assert
(
element
.
type
()
==
localFiniteElement
.
type
());
typedef
typename
GridView
::
template
Codim
<
0
>
::
Entity
::
Geometry
Geometry
;
typedef
typename
GridView
::
template
Codim
<
0
>
::
Entity
::
Geometry
Geometry
;
field_type
energy
=
0
;
field_type
energy
=
0
;
// typedef LocalGeodesicFEFunction<gridDim, DT, LocalFiniteElement, TargetSpace> LocalGFEFunctionType;
// LocalGFEFunctionType localGeodesicFEFunction(localFiniteElement,localConfiguration);
// store gradients of shape functions and base functions
// store gradients of shape functions and base functions
std
::
vector
<
Dune
::
FieldMatrix
<
DT
,
1
,
gridDim
>
>
referenceGradients
(
localFiniteElement
.
localBasis
().
size
());
std
::
vector
<
Dune
::
FieldMatrix
<
DT
,
1
,
gridDim
>
>
referenceGradients
(
localFiniteElement
.
localBasis
().
size
());
std
::
vector
<
Dune
::
FieldVector
<
DT
,
gridDim
>
>
gradients
(
localFiniteElement
.
localBasis
().
size
());
std
::
vector
<
Dune
::
FieldVector
<
DT
,
gridDim
>
>
gradients
(
localFiniteElement
.
localBasis
().
size
());
...
@@ -98,28 +92,13 @@ energy(const Entity& element,
...
@@ -98,28 +92,13 @@ energy(const Entity& element,
DT
weight
=
quad
[
pt
].
weight
()
*
integrationElement
;
DT
weight
=
quad
[
pt
].
weight
()
*
integrationElement
;
#if 1
// get gradients of shape functions
// get gradients of shape functions
localFiniteElement
.
localBasis
().
evaluateJacobian
(
quadPos
,
referenceGradients
);
localFiniteElement
.
localBasis
().
evaluateJacobian
(
quadPos
,
referenceGradients
);
// compute gradients of base functions
// compute gradients of base functions
for
(
size_t
i
=
0
;
i
<
gradients
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
gradients
.
size
();
++
i
)
// transform gradients
jacobianInverseTransposed
.
mv
(
referenceGradients
[
i
][
0
],
gradients
[
i
]);
jacobianInverseTransposed
.
mv
(
referenceGradients
[
i
][
0
],
gradients
[
i
]);
}
#endif
#if 0
// The derivative of the local function defined on the reference element
typename LocalGFEFunctionType::DerivativeType referenceDerivative = localGeodesicFEFunction.evaluateDerivative(quadPos);
// The derivative of the function defined on the actual element
typename LocalGFEFunctionType::DerivativeType derivative(0);
for (size_t comp=0; comp<referenceDerivative.N(); comp++)
jacobianInverseTransposed.umv(referenceDerivative[comp], derivative[comp]);
#endif
Dune
::
FieldMatrix
<
field_type
,
gridDim
,
gridDim
>
derivative
(
0
);
Dune
::
FieldMatrix
<
field_type
,
gridDim
,
gridDim
>
derivative
(
0
);
for
(
size_t
i
=
0
;
i
<
gradients
.
size
();
i
++
)
for
(
size_t
i
=
0
;
i
<
gradients
.
size
();
i
++
)
for
(
int
j
=
0
;
j
<
gridDim
;
j
++
)
for
(
int
j
=
0
;
j
<
gridDim
;
j
++
)
...
@@ -138,13 +117,9 @@ energy(const Entity& element,
...
@@ -138,13 +117,9 @@ energy(const Entity& element,
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// Eigenvalues of FTF
// Eigenvalues of FTF
//////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
#if 0 // hencky
std::array<field_type,dim> lambda = eigenValues(FTF);
//////////////////////////////////////////////////////////
Dune
::
FieldVector
<
field_type
,
dim
>
lambda
;
// Compute the derivative of the rotation
FMatrixHelp
::
eigenValues
(
FTF
,
lambda
);
// Note: we need it in matrix coordinates
//////////////////////////////////////////////////////////
// logarithms of the eigenvalues
// logarithms of the eigenvalues
std
::
array
<
field_type
,
dim
>
ln
;
std
::
array
<
field_type
,
dim
>
ln
;
...
@@ -160,53 +135,35 @@ energy(const Entity& element,
...
@@ -160,53 +135,35 @@ energy(const Entity& element,
trace
+=
ln
[
i
];
trace
+=
ln
[
i
];
energy
+=
weight
*
0.5
*
lambda_
*
trace
*
trace
;
energy
+=
weight
*
0.5
*
lambda_
*
trace
*
trace
;
#else
// St.Venant-Kirchhoff
Dune
::
FieldMatrix
<
field_type
,
dim
,
dim
>
E
=
FTF
;
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
E
[
i
][
i
]
-=
1.0
;
E
*=
0.5
;
field_type
trE
=
E
[
0
][
0
]
+
E
[
1
][
1
]
+
E
[
2
][
2
];
Dune
::
FieldMatrix
<
field_type
,
dim
,
dim
>
ESquared
=
E
*
E
;
field_type
trESquared
=
ESquared
[
0
][
0
]
+
ESquared
[
1
][
1
]
+
ESquared
[
2
][
2
];
energy
+=
weight
*
mu_
*
trESquared
+
weight
*
0.5
*
lambda_
*
trE
*
trE
;
#endif
}
}
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// Assemble boundary contributions
// Assemble boundary contributions
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
for
(
size_t
i
=
0
;
i
<
localPointLoads
.
size
();
i
++
)
for
(
size_t
j
=
0
;
j
<
dim
;
j
++
)
energy
-=
localConfiguration
[
i
][
j
]
*
localPointLoads
[
i
][
j
];
if
(
not
neumannFunction_
)
if
(
not
neumannFunction_
)
return
energy
;
return
energy
;
for
(
typename
Entity
::
LeafIntersectionIterator
it
=
element
.
ileafbegin
();
it
!=
element
.
ileafend
();
++
it
)
{
for
(
auto
&&
it
:
intersections
(
neumannBoundary_
->
gridView
(),
element
)
)
{
if
(
not
neumannBoundary_
or
not
neumannBoundary_
->
contains
(
*
it
))
if
(
not
neumannBoundary_
or
not
neumannBoundary_
->
contains
(
it
))
continue
;
continue
;
const
Dune
::
QuadratureRule
<
DT
,
gridDim
-
1
>&
quad
const
Dune
::
QuadratureRule
<
DT
,
gridDim
-
1
>&
quad
=
Dune
::
QuadratureRules
<
DT
,
gridDim
-
1
>::
rule
(
it
->
type
(),
quadOrder
);
=
Dune
::
QuadratureRules
<
DT
,
gridDim
-
1
>::
rule
(
it
.
type
(),
quadOrder
);
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
// Local position of the quadrature point
// Local position of the quadrature point
const
Dune
::
FieldVector
<
DT
,
gridDim
>&
quadPos
=
it
->
geometryInInside
().
global
(
quad
[
pt
].
position
());
const
Dune
::
FieldVector
<
DT
,
gridDim
>&
quadPos
=
it
.
geometryInInside
().
global
(
quad
[
pt
].
position
());
const
DT
integrationElement
=
it
->
geometry
().
integrationElement
(
quad
[
pt
].
position
());
const
DT
integrationElement
=
it
.
geometry
().
integrationElement
(
quad
[
pt
].
position
());
// The value of the local function
// The value of the local function
//RealTuple<field_type,dim> value = localGeodesicFEFunction.evaluate(quadPos);
// get gradients of shape functions
std
::
vector
<
Dune
::
FieldVector
<
DT
,
1
>
>
shapeFunctionValues
;
std
::
vector
<
Dune
::
FieldVector
<
DT
,
1
>
>
shapeFunctionValues
;
localFiniteElement
.
localBasis
().
evaluateFunction
(
quadPos
,
shapeFunctionValues
);
localFiniteElement
.
localBasis
().
evaluateFunction
(
quadPos
,
shapeFunctionValues
);
Dune
::
FieldVector
<
field_type
,
dim
>
value
(
0
);
Dune
::
FieldVector
<
field_type
,
dim
>
value
(
0
);
for
(
int
i
=
0
;
i
<
localFiniteElement
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
localFiniteElement
.
size
();
i
++
)
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
...
@@ -218,7 +175,7 @@ energy(const Entity& element,
...
@@ -218,7 +175,7 @@ energy(const Entity& element,
if
(
dynamic_cast
<
const
VirtualGridViewFunction
<
GridView
,
Dune
::
FieldVector
<
double
,
3
>
>*>
(
neumannFunction_
))
if
(
dynamic_cast
<
const
VirtualGridViewFunction
<
GridView
,
Dune
::
FieldVector
<
double
,
3
>
>*>
(
neumannFunction_
))
dynamic_cast
<
const
VirtualGridViewFunction
<
GridView
,
Dune
::
FieldVector
<
double
,
3
>
>*>
(
neumannFunction_
)
->
evaluateLocal
(
element
,
quadPos
,
neumannValue
);
dynamic_cast
<
const
VirtualGridViewFunction
<
GridView
,
Dune
::
FieldVector
<
double
,
3
>
>*>
(
neumannFunction_
)
->
evaluateLocal
(
element
,
quadPos
,
neumannValue
);
else
else
neumannFunction_
->
evaluate
(
it
->
geometry
().
global
(
quad
[
pt
].
position
()),
neumannValue
);
neumannFunction_
->
evaluate
(
it
.
geometry
().
global
(
quad
[
pt
].
position
()),
neumannValue
);
// Only translational dofs are affected by the Neumann force
// Only translational dofs are affected by the Neumann force
for
(
size_t
i
=
0
;
i
<
neumannValue
.
size
();
i
++
)
for
(
size_t
i
=
0
;
i
<
neumannValue
.
size
();
i
++
)
...
@@ -231,191 +188,8 @@ energy(const Entity& element,
...
@@ -231,191 +188,8 @@ energy(const Entity& element,
return
energy
;
return
energy
;
}
}
}
// namespace Fufem
}
// namespace Dune
}
// namespace Dune
template
<
class
GridView
,
class
LocalFiniteElement
,
int
dim
,
class
field_type
=
double
>
#endif //#ifndef DUNE_GFE_HENCKYENERGY_HH
class
HenckyEnergy
:
public
LocalGeodesicFEStiffness
<
GridView
,
LocalFiniteElement
,
RealTuple
<
field_type
,
dim
>
>
{
// grid types
typedef
typename
GridView
::
Grid
::
ctype
DT
;
typedef
RealTuple
<
field_type
,
dim
>
TargetSpace
;
typedef
typename
TargetSpace
::
ctype
RT
;
typedef
typename
GridView
::
template
Codim
<
0
>
::
Entity
Entity
;
// some other sizes
enum
{
gridDim
=
GridView
::
dimension
};
public
:
// for testing
/** \brief Constructor with a set of material parameters
* \param parameters The material parameters
*/
HenckyEnergy
(
const
Dune
::
ParameterTree
&
parameters
,
const
BoundaryPatch
<
GridView
>*
neumannBoundary
,
const
Dune
::
VirtualFunction
<
Dune
::
FieldVector
<
double
,
gridDim
>
,
Dune
::
FieldVector
<
double
,
3
>
>*
neumannFunction
)
:
neumannBoundary_
(
neumannBoundary
),
neumannFunction_
(
neumannFunction
)
{
// Lame constants
mu_
=
parameters
.
template
get
<
double
>(
"mu"
);
lambda_
=
parameters
.
template
get
<
double
>(
"lambda"
);
}
/** \brief Assemble the energy for a single element */
RT
energy
(
const
Entity
&
e
,
const
LocalFiniteElement
&
localFiniteElement
,
const
std
::
vector
<
TargetSpace
>&
localSolution
)
const
;
/** \brief Lame constants */
double
mu_
,
lambda_
;
/** \brief The Neumann boundary */
const
BoundaryPatch
<
GridView
>*
neumannBoundary_
;
/** \brief The function implementing the Neumann data */
const
Dune
::
VirtualFunction
<
Dune
::
FieldVector
<
double
,
gridDim
>
,
Dune
::
FieldVector
<
double
,
3
>
>*
neumannFunction_
;
};
template
<
class
GridView
,
class
LocalFiniteElement
,
int
dim
,
class
field_type
>
typename
HenckyEnergy
<
GridView
,
LocalFiniteElement
,
dim
,
field_type
>::
RT
HenckyEnergy
<
GridView
,
LocalFiniteElement
,
dim
,
field_type
>::
energy
(
const
Entity
&
element
,
const
LocalFiniteElement
&
localFiniteElement
,
const
std
::
vector
<
RealTuple
<
field_type
,
dim
>
>&
localConfiguration
)
const
{
assert
(
element
.
type
()
==
localFiniteElement
.
type
());
typedef
typename
GridView
::
template
Codim
<
0
>
::
Entity
::
Geometry
Geometry
;
RT
energy
=
0
;
typedef
LocalGeodesicFEFunction
<
gridDim
,
DT
,
LocalFiniteElement
,
TargetSpace
>
LocalGFEFunctionType
;
LocalGFEFunctionType
localGeodesicFEFunction
(
localFiniteElement
,
localConfiguration
);
int
quadOrder
=
(
element
.
type
().
isSimplex
())
?
localFiniteElement
.
localBasis
().
order
()
:
localFiniteElement
.
localBasis
().
order
()
*
gridDim
;
const
Dune
::
QuadratureRule
<
DT
,
gridDim
>&
quad
=
Dune
::
QuadratureRules
<
DT
,
gridDim
>::
rule
(
element
.
type
(),
quadOrder
);
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
DT
,
gridDim
>&
quadPos
=
quad
[
pt
].
position
();
const
DT
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
const
typename
Geometry
::
JacobianInverseTransposed
&
jacobianInverseTransposed
=
element
.
geometry
().
jacobianInverseTransposed
(
quadPos
);
DT
weight
=
quad
[
pt
].
weight
()
*
integrationElement
;
// The derivative of the local function defined on the reference element
typename
LocalGFEFunctionType
::
DerivativeType
referenceDerivative
=
localGeodesicFEFunction
.
evaluateDerivative
(
quadPos
);
// The derivative of the function defined on the actual element
typename
LocalGFEFunctionType
::
DerivativeType
derivative
(
0
);
for
(
size_t
comp
=
0
;
comp
<
referenceDerivative
.
N
();
comp
++
)
jacobianInverseTransposed
.
umv
(
referenceDerivative
[
comp
],
derivative
[
comp
]);
/////////////////////////////////////////////////////////
// compute F^T F
/////////////////////////////////////////////////////////
Dune
::
FieldMatrix
<
field_type
,
dim
,
dim
>
FTF
(
0
);
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
for
(
int
k
=
0
;
k
<
dim
;
k
++
)
FTF
[
i
][
j
]
+=
derivative
[
k
][
i
]
*
derivative
[
k
][
j
];
//////////////////////////////////////////////////////////
// Eigenvalues of FTF
//////////////////////////////////////////////////////////
#if 0 // hencky
std::array<field_type,dim> lambda = eigenValues(FTF);
//////////////////////////////////////////////////////////
// Compute the derivative of the rotation
// Note: we need it in matrix coordinates
//////////////////////////////////////////////////////////
// logarithms of the eigenvalues
std::array<field_type,dim> ln;
for (int i=0; i<dim; i++)
ln[i] = std::log(lambda[i]);
// Add the local energy density
for (int i=0; i<dim; i++)
energy += weight * mu_ * ln[i]*ln[i];
field_type trace = 0;
for (int i=0; i<dim; i++)
trace += ln[i];
energy += weight * 0.5 * lambda_ * trace * trace;
#else
// St.Venant-Kirchhoff
Dune
::
FieldMatrix
<
field_type
,
dim
,
dim
>
E
=
FTF
;
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
E
[
i
][
i
]
-=
1.0
;
E
*=
0.5
;
field_type
trE
=
E
[
0
][
0
]
+
E
[
1
][
1
]
+
E
[
2
][
2
];
Dune
::
FieldMatrix
<
field_type
,
dim
,
dim
>
ESquared
=
E
*
E
;
field_type
trESquared
=
ESquared
[
0
][
0
]
+
ESquared
[
1
][
1
]
+
ESquared
[
2
][
2
];
energy
+=
weight
*
mu_
*
trESquared
+
weight
*
0.5
*
lambda_
*
trE
*
trE
;
#endif
}
//////////////////////////////////////////////////////////////////////////////
// Assemble boundary contributions
//////////////////////////////////////////////////////////////////////////////
if
(
not
neumannFunction_
)
return
energy
;
for
(
typename
Entity
::
LeafIntersectionIterator
it
=
element
.
ileafbegin
();
it
!=
element
.
ileafend
();
++
it
)
{
if
(
not
neumannBoundary_
or
not
neumannBoundary_
->
contains
(
*
it
))
continue
;
const
Dune
::
QuadratureRule
<
DT
,
gridDim
-
1
>&
quad
=
Dune
::
QuadratureRules
<
DT
,
gridDim
-
1
>::
rule
(
it
->
type
(),
quadOrder
);
for
(
size_t
pt
=
0
;
pt
<
quad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
DT
,
gridDim
>&
quadPos
=
it
->
geometryInInside
().
global
(
quad
[
pt
].
position
());
const
DT
integrationElement
=
it
->
geometry
().
integrationElement
(
quad
[
pt
].
position
());
// The value of the local function
RealTuple
<
field_type
,
dim
>
value
=
localGeodesicFEFunction
.
evaluate
(
quadPos
);
// Value of the Neumann data at the current position
Dune
::
FieldVector
<
double
,
3
>
neumannValue
;
if
(
dynamic_cast
<
const
VirtualGridViewFunction
<
GridView
,
Dune
::
FieldVector
<
double
,
3
>
>*>
(
neumannFunction_
))
dynamic_cast
<
const
VirtualGridViewFunction
<
GridView
,
Dune
::
FieldVector
<
double
,
3
>
>*>
(
neumannFunction_
)
->
evaluateLocal
(
element
,
quadPos
,
neumannValue
);
else
neumannFunction_
->
evaluate
(
it
->
geometry
().
global
(
quad
[
pt
].
position
()),
neumannValue
);
// Only translational dofs are affected by the Neumann force
for
(
size_t
i
=
0
;
i
<
neumannValue
.
size
();
i
++
)
energy
+=
(
neumannValue
[
i
]
*
value
.
globalCoordinates
()[
i
])
*
quad
[
pt
].
weight
()
*
integrationElement
;
}
}
return
energy
;
}
#endif //#ifndef COSSERAT_ENERGY_LOCAL_STIFFNESS_HH
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment