Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
a53627da
Commit
a53627da
authored
19 years ago
by
Oliver Sander
Committed by
sander
19 years ago
Browse files
Options
Downloads
Patches
Plain Diff
gradient completely implemented
[[Imported from SVN: r742]]
parent
bf4b92f1
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/rodassembler.cc
+138
-27
138 additions, 27 deletions
src/rodassembler.cc
src/rodassembler.hh
+23
-2
23 additions, 2 deletions
src/rodassembler.hh
with
161 additions
and
29 deletions
src/rodassembler.cc
+
138
−
27
View file @
a53627da
...
...
@@ -91,6 +91,12 @@ assembleMatrix(const std::vector<Configuration>& sol,
}
}
// temporary: make identity
matrix
=
0
;
for
(
int
i
=
0
;
i
<
matrix
.
N
();
i
++
)
for
(
int
j
=
0
;
j
<
6
;
j
++
)
matrix
[
i
][
i
][
j
][
j
]
=
1
;
}
...
...
@@ -308,12 +314,11 @@ assembleGradient(const std::vector<Configuration>& sol,
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////
Array
<
FieldVector
<
double
,
gridDim
>
>
shapeGrad
(
numOfBaseFct
)
;
double
shapeGrad
[
numOfBaseFct
]
;
for
(
int
dof
=
0
;
dof
<
numOfBaseFct
;
dof
++
)
{
for
(
int
i
=
0
;
i
<
gridDim
;
i
++
)
shapeGrad
[
dof
][
i
]
=
baseSet
[
dof
].
evaluateDerivative
(
0
,
i
,
quadPos
);
shapeGrad
[
dof
]
=
baseSet
[
dof
].
evaluateDerivative
(
0
,
0
,
quadPos
);
// multiply with jacobian inverse
FieldVector
<
double
,
gridDim
>
tmp
(
0
);
...
...
@@ -332,41 +337,147 @@ assembleGradient(const std::vector<Configuration>& sol,
// //////////////////////////////////
FieldVector
<
double
,
3
>
r_s
;
r_s
[
0
]
=
localSolution
[
0
].
r
[
0
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
r
[
0
]
*
shapeGrad
[
1
][
0
];
r_s
[
1
]
=
localSolution
[
0
].
r
[
1
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
r
[
1
]
*
shapeGrad
[
1
][
0
];
r_s
[
2
]
=
localSolution
[
0
].
r
[
2
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
r
[
2
]
*
shapeGrad
[
1
][
0
];
r_s
[
0
]
=
localSolution
[
0
].
r
[
0
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
r
[
0
]
*
shapeGrad
[
1
];
r_s
[
1
]
=
localSolution
[
0
].
r
[
1
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
r
[
1
]
*
shapeGrad
[
1
];
r_s
[
2
]
=
localSolution
[
0
].
r
[
2
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
r
[
2
]
*
shapeGrad
[
1
];
// Interpolate current rotation at this quadrature point and normalize
// to get a unit quaternion again
Quaternion
<
double
>
hatq
;
hatq
[
0
]
=
localSolution
[
0
].
q
[
0
]
*
shapeFunction
[
0
]
+
localSolution
[
1
].
q
[
0
]
*
shapeFunction
[
1
];
hatq
[
1
]
=
localSolution
[
0
].
q
[
1
]
*
shapeFunction
[
0
]
+
localSolution
[
1
].
q
[
1
]
*
shapeFunction
[
1
];
hatq
[
2
]
=
localSolution
[
0
].
q
[
2
]
*
shapeFunction
[
0
]
+
localSolution
[
1
].
q
[
2
]
*
shapeFunction
[
1
];
hatq
[
3
]
=
localSolution
[
0
].
q
[
3
]
*
shapeFunction
[
0
]
+
localSolution
[
1
].
q
[
3
]
*
shapeFunction
[
1
];
hatq
.
normalize
();
// Get the derivative of the rotation at the quadrature point by interpolating in $H$ and normalizing
Quaternion
<
double
>
hatq_s
;
hatq_s
[
0
]
=
localSolution
[
0
].
q
[
0
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
q
[
0
]
*
shapeGrad
[
1
];
hatq_s
[
1
]
=
localSolution
[
0
].
q
[
1
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
q
[
1
]
*
shapeGrad
[
1
];
hatq_s
[
2
]
=
localSolution
[
0
].
q
[
2
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
q
[
2
]
*
shapeGrad
[
1
];
hatq_s
[
3
]
=
localSolution
[
0
].
q
[
3
]
*
shapeGrad
[
0
]
+
localSolution
[
1
].
q
[
3
]
*
shapeGrad
[
1
];
hatq_s
.
normalize
();
FieldVector
<
double
,
3
>
u
;
// The Darboux vector
u
[
0
]
=
2
*
(
hatq
[
3
]
*
hatq_s
[
0
]
+
hatq
[
2
]
*
hatq_s
[
1
]
-
hatq
[
1
]
*
hatq_s
[
2
]
-
hatq
[
0
]
*
hatq_s
[
3
]);
u
[
1
]
=
2
*
(
-
hatq
[
2
]
*
hatq_s
[
0
]
+
hatq
[
3
]
*
hatq_s
[
1
]
+
hatq
[
0
]
*
hatq_s
[
2
]
-
hatq
[
1
]
*
hatq_s
[
3
]);
u
[
2
]
=
2
*
(
hatq
[
1
]
*
hatq_s
[
0
]
-
hatq
[
0
]
*
hatq_s
[
1
]
+
hatq
[
3
]
*
hatq_s
[
2
]
-
hatq
[
2
]
*
hatq_s
[
3
]);
// Contains \partial q / \partial v^i_j at v = 0
Quaternion
<
double
>
dq_dvij
[
2
][
3
];
Quaternion
<
double
>
dq_dvij_ds
[
2
][
3
];
for
(
int
i
=
0
;
i
<
2
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
{
dq_dvij
[
i
][
j
][
m
]
=
(
j
==
m
)
*
0.5
*
shapeFunction
[
i
];
dq_dvij_ds
[
i
][
j
][
m
]
=
(
j
==
m
)
*
0.5
*
shapeGrad
[
i
];
}
dq_dvij
[
i
][
j
][
3
]
=
0
;
dq_dvij_ds
[
i
][
j
][
3
]
=
0
;
}
// Contains \parder
FieldVector
<
double
,
3
>
dd_dvij
[
3
][
2
][
3
];
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
// d1
dd_dvij
[
0
][
i
][
j
][
0
]
=
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
-
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
-
hatq
[
2
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
+
hatq
[
3
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
0
][
i
][
j
][
1
]
=
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
*
hatq
[
1
]
+
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
+
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
*
hatq
[
3
]
+
hatq
[
2
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
0
][
i
][
j
][
2
]
=
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
*
hatq
[
2
]
+
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
-
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
*
hatq
[
3
]
-
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
// d2
dd_dvij
[
1
][
i
][
j
][
0
]
=
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
*
hatq
[
1
]
+
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
-
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
*
hatq
[
3
]
-
hatq
[
2
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
1
][
i
][
j
][
1
]
=
-
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
+
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
-
hatq
[
2
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
+
hatq
[
3
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
1
][
i
][
j
][
2
]
=
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
*
hatq
[
2
]
+
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
-
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
*
hatq
[
3
]
-
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
// d3
dd_dvij
[
2
][
i
][
j
][
0
]
=
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
*
hatq
[
2
]
+
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
+
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
*
hatq
[
3
]
+
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
2
][
i
][
j
][
1
]
=
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
*
hatq
[
2
]
+
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
-
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
*
hatq
[
3
]
-
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
2
][
i
][
j
][
2
]
=
-
hatq
[
0
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
0
]
-
hatq
[
1
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
1
]
+
hatq
[
2
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
2
]
+
hatq
[
3
]
*
(
dq_dvij
[
i
][
j
].
mult
(
hatq
))[
3
];
dd_dvij
[
0
][
i
][
j
]
*=
2
;
dd_dvij
[
1
][
i
][
j
]
*=
2
;
dd_dvij
[
2
][
i
][
j
]
*=
2
;
//
double theta_s = localSolution[0][2]*shapeGrad[0][0] + localSolution[1][2]*shapeGrad[1][0];
}
//
double theta = localSolution[0][2]*shapeFunction[0] + localSolution[1][2]*shapeFunction[1];
}
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
#if 0
double partA1 = A1 * (x_s * cos(theta) - y_s * sin(theta));
double partA3 = A3 * (x_s * sin(theta) + y_s * cos(theta) - 1);
for
(
int
dof
=
0
;
dof
<
numOfBaseFct
;
dof
++
)
{
int
globalDof
=
indexSet
.
template
subIndex
<
gridDim
>(
*
it
,
dof
);
//printf("globalDof: %d partA1: %g partA3: %g\n", globalDof, partA1, partA3);
// \partial J / \partial x^i
grad[globalDof][0] += weight * (partA1 * cos(theta) + partA3 * sin(theta)) * shapeGrad[dof][0];
// /////////////////////////////////////////////
// The translational part
// /////////////////////////////////////////////
// \partial \bar{W} / \partial r^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
// \partial J / \partial y^i
grad[globalDof][1] += weight * (-partA1 * sin(theta) + partA3 * cos(theta)) * shapeGrad[dof][0];
grad
[
globalDof
][
j
]
+=
weight
*
((
A1
*
(
r_s
*
hatq
.
director
(
0
))
*
shapeGrad
[
dof
]
*
hatq
.
director
(
0
)[
j
])
+
(
A2
*
(
r_s
*
hatq
.
director
(
1
))
*
shapeGrad
[
dof
]
*
hatq
.
director
(
1
)[
j
])
+
(
A3
*
(
r_s
*
hatq
.
director
(
2
)
-
1
)
*
shapeGrad
[
dof
]
*
hatq
.
director
(
2
)[
j
]));
// \partial J / \partial \theta^i
grad[globalDof][2] += weight * (B * theta_s * shapeGrad[dof][0]
+ partA1 * (-x_s * sin(theta) - y_s * cos(theta)) * shapeFunction[dof]
+ partA3 * ( x_s * cos(theta) - y_s * sin(theta)) * shapeFunction[dof]);
}
}
// \partial \bar{W}_v / \partial v^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
grad
[
globalDof
][
3
+
j
]
+=
weight
*
((
A1
*
(
r_s
*
hatq
.
director
(
0
))
*
(
r_s
*
dd_dvij
[
0
][
dof
][
j
]))
+
(
A2
*
(
r_s
*
hatq
.
director
(
1
))
*
(
r_s
*
dd_dvij
[
1
][
dof
][
j
]))
+
(
A3
*
(
r_s
*
hatq
.
director
(
2
)
-
1
)
*
(
r_s
*
dd_dvij
[
2
][
dof
][
j
])));
}
// /////////////////////////////////////////////
// The rotational part
// /////////////////////////////////////////////
// Stupid: I want those as an array
double
K
[
3
]
=
{
K1
,
K2
,
K3
};
// \partial \bar{W}_v / \partial v^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
{
grad
[
globalDof
][
3
+
j
]
+=
2
*
weight
*
K
[
m
]
*
u
[
m
]
*
(
B
(
m
,(
dq_dvij
[
dof
][
j
].
mult
(
hatq
)))
*
hatq_s
+
B
(
m
,
hatq
).
mult
(
dq_dvij_ds
[
dof
][
j
].
mult
(
hatq
)
+
dq_dvij
[
dof
][
j
].
mult
(
hatq_s
)));
}
}
}
#endif
}
}
...
...
@@ -465,20 +576,20 @@ computeEnergy(const std::vector<Configuration>& sol) const
q_s
[
2
]
=
localSolution
[
0
].
q
[
2
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
q
[
2
]
*
shapeGrad
[
1
][
0
];
q_s
[
3
]
=
localSolution
[
0
].
q
[
3
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
q
[
3
]
*
shapeGrad
[
1
][
0
];
q
.
normalize
();
q
_s
.
normalize
();
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
// Part I: the shearing and stretching energy
std
::
cout
<<
"tangent : "
<<
r_s
<<
std
::
endl
;
//
std::cout << "tangent : " << r_s << std::endl;
FieldVector
<
double
,
3
>
v
;
v
[
0
]
=
r_s
*
q
.
director
(
0
);
// shear strain
v
[
1
]
=
r_s
*
q
.
director
(
1
);
// shear strain
v
[
2
]
=
r_s
*
q
.
director
(
2
);
// stretching strain
std
::
cout
<<
"strain : "
<<
v
<<
std
::
endl
;
//
std::cout << "strain : " << v << std::endl;
energy
+=
0.5
*
A1
*
v
[
0
]
*
v
[
0
]
+
0.5
*
A2
*
v
[
1
]
*
v
[
1
]
+
0.5
*
A3
*
(
v
[
2
]
-
1
)
*
(
v
[
2
]
-
1
);
...
...
@@ -489,7 +600,7 @@ computeEnergy(const std::vector<Configuration>& sol) const
u
[
1
]
=
2
*
(
-
q
[
2
]
*
q_s
[
0
]
+
q
[
3
]
*
q_s
[
1
]
+
q
[
0
]
*
q_s
[
2
]
-
q
[
1
]
*
q_s
[
3
]);
u
[
2
]
=
2
*
(
q
[
1
]
*
q_s
[
0
]
-
q
[
0
]
*
q_s
[
1
]
+
q
[
3
]
*
q_s
[
2
]
-
q
[
2
]
*
q_s
[
3
]);
std
::
cout
<<
"Darboux vector : "
<<
u
<<
std
::
endl
;
//
std::cout << "Darboux vector : " << u << std::endl;
energy
+=
0.5
*
(
K1
*
u
[
0
]
*
u
[
0
]
+
K2
*
u
[
1
]
*
u
[
1
]
+
K3
*
u
[
2
]
*
u
[
2
]);
...
...
This diff is collapsed.
Click to expand it.
src/rodassembler.hh
+
23
−
2
View file @
a53627da
...
...
@@ -80,8 +80,29 @@ namespace Dune
const
std
::
vector
<
Configuration
>&
localSolution
,
const
int
matSize
,
MatrixType
&
mat
)
const
;
template
<
class
T
>
static
Quaternion
<
T
>
B
(
int
m
,
const
Quaternion
<
T
>&
q
)
{
assert
(
m
>=
0
&&
m
<
3
);
Quaternion
<
T
>
r
;
if
(
m
==
0
)
{
r
[
0
]
=
q
[
3
];
r
[
1
]
=
q
[
2
];
r
[
2
]
=
-
q
[
1
];
r
[
3
]
=
-
q
[
0
];
}
else
if
(
m
==
1
)
{
r
[
0
]
=
-
q
[
2
];
r
[
1
]
=
q
[
3
];
r
[
2
]
=
q
[
0
];
r
[
3
]
=
-
q
[
1
];
}
else
{
r
[
0
]
=
q
[
1
];
r
[
1
]
=
-
q
[
0
];
r
[
2
]
=
q
[
3
];
r
[
3
]
=
-
q
[
2
];
}
return
r
;
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment