Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
ac1f3cdf
Commit
ac1f3cdf
authored
11 years ago
by
Oliver Sander
Committed by
sander
11 years ago
Browse files
Options
Downloads
Patches
Plain Diff
less hard-coded 'double'
[[Imported from SVN: r9403]]
parent
9d8536c1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dune/gfe/localgeodesicfefunction.hh
+54
-53
54 additions, 53 deletions
dune/gfe/localgeodesicfefunction.hh
with
54 additions
and
53 deletions
dune/gfe/localgeodesicfefunction.hh
+
54
−
53
View file @
ac1f3cdf
...
...
@@ -30,6 +30,7 @@ class LocalGfeTestFunctionBasis;
template
<
int
dim
,
class
ctype
,
class
LocalFiniteElement
,
class
TargetSpace
>
class
LocalGeodesicFEFunction
{
typedef
typename
TargetSpace
::
ctype
RT
;
typedef
typename
TargetSpace
::
EmbeddedTangentVector
EmbeddedTangentVector
;
static
const
int
embeddedDim
=
EmbeddedTangentVector
::
dimension
;
...
...
@@ -40,10 +41,10 @@ class LocalGeodesicFEFunction
public:
/** \brief The type used for derivatives */
typedef
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
dim
>
DerivativeType
;
typedef
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
dim
>
DerivativeType
;
/** \brief The type used for derivatives of the gradient with respect to coefficients */
typedef
Tensor3
<
ctype
,
embeddedDim
,
embeddedDim
,
dim
>
DerivativeOfGradientWRTCoefficientType
;
typedef
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
dim
>
DerivativeOfGradientWRTCoefficientType
;
/** \brief Constructor
* \param localFiniteElement A Lagrangian finite element that provides the interpolation points
...
...
@@ -88,12 +89,12 @@ public:
/** \brief Evaluate the derivative of the function value with respect to a coefficient */
void
evaluateDerivativeOfValueWRTCoefficient
(
const
Dune
::
FieldVector
<
ctype
,
dim
>&
local
,
int
coefficient
,
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>&
derivative
)
const
;
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>&
derivative
)
const
;
/** \brief Evaluate the derivative of the function value with respect to a coefficient */
void
evaluateFDDerivativeOfValueWRTCoefficient
(
const
Dune
::
FieldVector
<
ctype
,
dim
>&
local
,
int
coefficient
,
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>&
derivative
)
const
;
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>&
derivative
)
const
;
/** \brief Evaluate the derivative of the gradient of the function with respect to a coefficient */
void
evaluateDerivativeOfGradientWRTCoefficient
(
const
Dune
::
FieldVector
<
ctype
,
dim
>&
local
,
...
...
@@ -112,16 +113,16 @@ public:
}
private
:
static
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>
pseudoInverse
(
const
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>&
dFdq
,
static
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
pseudoInverse
(
const
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>&
dFdq
,
const
TargetSpace
&
q
)
{
const
int
shortDim
=
TargetSpace
::
TangentVector
::
dimension
;
// the orthonormal frame
Dune
::
FieldMatrix
<
ctype
,
shortDim
,
embeddedDim
>
O
=
q
.
orthonormalFrame
();
Dune
::
FieldMatrix
<
RT
,
shortDim
,
embeddedDim
>
O
=
q
.
orthonormalFrame
();
// compute A = O dFDq O^T
Dune
::
FieldMatrix
<
ctype
,
shortDim
,
shortDim
>
A
;
Dune
::
FieldMatrix
<
RT
,
shortDim
,
shortDim
>
A
;
for
(
int
i
=
0
;
i
<
shortDim
;
i
++
)
for
(
int
j
=
0
;
j
<
shortDim
;
j
++
)
{
A
[
i
][
j
]
=
0
;
...
...
@@ -132,7 +133,7 @@ private:
A
.
invert
();
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
result
;
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
result
;
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
{
result
[
i
][
j
]
=
0
;
...
...
@@ -145,21 +146,21 @@ private:
}
/** \brief Compute derivate of F(w,q) (the derivative of the weighted distance fctl) wrt to w */
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
ctype
,
1
,
1
>
>
computeDFdw
(
const
TargetSpace
&
q
)
const
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
RT
,
1
,
1
>
>
computeDFdw
(
const
TargetSpace
&
q
)
const
{
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
ctype
,
1
,
1
>
>
dFdw
(
embeddedDim
,
localFiniteElement_
.
localBasis
().
size
());
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
RT
,
1
,
1
>
>
dFdw
(
embeddedDim
,
localFiniteElement_
.
localBasis
().
size
());
for
(
size_t
i
=
0
;
i
<
localFiniteElement_
.
localBasis
().
size
();
i
++
)
{
Dune
::
FieldVector
<
ctype
,
embeddedDim
>
tmp
=
TargetSpace
::
derivativeOfDistanceSquaredWRTSecondArgument
(
coefficients_
[
i
],
q
);
Dune
::
FieldVector
<
RT
,
embeddedDim
>
tmp
=
TargetSpace
::
derivativeOfDistanceSquaredWRTSecondArgument
(
coefficients_
[
i
],
q
);
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
dFdw
[
j
][
i
]
=
tmp
[
j
];
}
return
dFdw
;
}
Tensor3
<
ctype
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
computeDqDqF
(
const
std
::
vector
<
Dune
::
FieldVector
<
ctype
,
1
>
>&
w
,
const
TargetSpace
&
q
)
const
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
computeDqDqF
(
const
std
::
vector
<
Dune
::
FieldVector
<
ctype
,
1
>
>&
w
,
const
TargetSpace
&
q
)
const
{
Tensor3
<
ctype
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
result
;
result
=
0
;
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
result
;
result
=
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
(
RT
(
0
))
;
for
(
size_t
i
=
0
;
i
<
w
.
size
();
i
++
)
result
.
axpy
(
w
[
i
][
0
],
TargetSpace
::
thirdDerivativeOfDistanceSquaredWRTSecondArgument
(
coefficients_
[
i
],
q
));
return
result
;
...
...
@@ -219,7 +220,7 @@ typename LocalGeodesicFEFunction<dim,ctype,LocalFiniteElement,TargetSpace>::Deri
LocalGeodesicFEFunction
<
dim
,
ctype
,
LocalFiniteElement
,
TargetSpace
>::
evaluateDerivative
(
const
Dune
::
FieldVector
<
ctype
,
dim
>&
local
,
const
TargetSpace
&
q
)
const
{
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
dim
>
result
;
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
dim
>
result
;
#if 0 // this is probably faster than the general implementation, but we leave it out for testing purposes
if (dim==1) {
...
...
@@ -246,11 +247,11 @@ evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace
B
[
i
][
j
]
=
BNested
[
i
][
0
][
j
];
// compute negative derivative of F(w,q) (the derivative of the weighted distance fctl) wrt to w
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
ctype
,
1
,
1
>
>
dFdw
=
computeDFdw
(
q
);
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
RT
,
1
,
1
>
>
dFdw
=
computeDFdw
(
q
);
dFdw
*=
-
1
;
// multiply the two previous matrices: the result is the right hand side
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
ctype
,
1
,
1
>
>
RHS
=
dFdw
*
B
;
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
RT
,
1
,
1
>
>
RHS
=
dFdw
*
B
;
// the actual system matrix
std
::
vector
<
Dune
::
FieldVector
<
ctype
,
1
>
>
w
;
...
...
@@ -258,7 +259,7 @@ evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace
AverageDistanceAssembler
<
TargetSpace
>
assembler
(
coefficients_
,
w
);
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
dFdq
(
0
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
dFdq
(
0
);
assembler
.
assembleEmbeddedHessian
(
q
,
dFdq
);
// ////////////////////////////////////
...
...
@@ -275,10 +276,10 @@ evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace
const
int
shortDim
=
TargetSpace
::
TangentVector
::
dimension
;
// the orthonormal frame
Dune
::
FieldMatrix
<
ctype
,
shortDim
,
embeddedDim
>
O
=
q
.
orthonormalFrame
();
Dune
::
FieldMatrix
<
RT
,
shortDim
,
embeddedDim
>
O
=
q
.
orthonormalFrame
();
// compute A = O dFDq O^T
Dune
::
FieldMatrix
<
ctype
,
shortDim
,
shortDim
>
A
;
Dune
::
FieldMatrix
<
RT
,
shortDim
,
shortDim
>
A
;
for
(
int
i
=
0
;
i
<
shortDim
;
i
++
)
for
(
int
j
=
0
;
j
<
shortDim
;
j
++
)
{
A
[
i
][
j
]
=
0
;
...
...
@@ -289,17 +290,17 @@ evaluateDerivative(const Dune::FieldVector<ctype, dim>& local, const TargetSpace
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
Dune
::
FieldVector
<
ctype
,
embeddedDim
>
rhs
;
Dune
::
FieldVector
<
RT
,
embeddedDim
>
rhs
;
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
rhs
[
j
]
=
RHS
[
j
][
i
];
Dune
::
FieldVector
<
ctype
,
shortDim
>
shortRhs
;
Dune
::
FieldVector
<
RT
,
shortDim
>
shortRhs
;
O
.
mv
(
rhs
,
shortRhs
);
Dune
::
FieldVector
<
ctype
,
shortDim
>
shortX
;
Dune
::
FieldVector
<
RT
,
shortDim
>
shortX
;
A
.
solve
(
shortX
,
shortRhs
);
Dune
::
FieldVector
<
ctype
,
embeddedDim
>
x
;
Dune
::
FieldVector
<
RT
,
embeddedDim
>
x
;
O
.
mtv
(
shortX
,
x
);
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
...
...
@@ -342,7 +343,7 @@ template <int dim, class ctype, class LocalFiniteElement, class TargetSpace>
void
LocalGeodesicFEFunction
<
dim
,
ctype
,
LocalFiniteElement
,
TargetSpace
>::
evaluateDerivativeOfValueWRTCoefficient
(
const
Dune
::
FieldVector
<
ctype
,
dim
>&
local
,
int
coefficient
,
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>&
result
)
const
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>&
result
)
const
{
// the function value at the point where we are evaluating the derivative
TargetSpace
q
=
evaluate
(
local
);
...
...
@@ -353,16 +354,16 @@ evaluateDerivativeOfValueWRTCoefficient(const Dune::FieldVector<ctype, dim>& loc
AverageDistanceAssembler
<
TargetSpace
>
assembler
(
coefficients_
,
w
);
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
dFdq
(
0
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
dFdq
(
0
);
assembler
.
assembleEmbeddedHessian
(
q
,
dFdq
);
const
int
shortDim
=
TargetSpace
::
TangentVector
::
dimension
;
// the orthonormal frame
Dune
::
FieldMatrix
<
ctype
,
shortDim
,
embeddedDim
>
O
=
q
.
orthonormalFrame
();
Dune
::
FieldMatrix
<
RT
,
shortDim
,
embeddedDim
>
O
=
q
.
orthonormalFrame
();
// compute A = O dFDq O^T
Dune
::
FieldMatrix
<
ctype
,
shortDim
,
shortDim
>
A
;
Dune
::
FieldMatrix
<
RT
,
shortDim
,
shortDim
>
A
;
for
(
int
i
=
0
;
i
<
shortDim
;
i
++
)
for
(
int
j
=
0
;
j
<
shortDim
;
j
++
)
{
A
[
i
][
j
]
=
0
;
...
...
@@ -372,15 +373,15 @@ evaluateDerivativeOfValueWRTCoefficient(const Dune::FieldVector<ctype, dim>& loc
}
//
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>
rhs
=
TargetSpace
::
secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument
(
coefficients_
[
coefficient
],
q
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
rhs
=
TargetSpace
::
secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument
(
coefficients_
[
coefficient
],
q
);
rhs
*=
-
w
[
coefficient
];
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
{
Dune
::
FieldVector
<
ctype
,
shortDim
>
shortRhs
;
Dune
::
FieldVector
<
RT
,
shortDim
>
shortRhs
;
O
.
mv
(
rhs
[
i
],
shortRhs
);
Dune
::
FieldVector
<
ctype
,
shortDim
>
shortX
;
Dune
::
FieldVector
<
RT
,
shortDim
>
shortX
;
A
.
solve
(
shortX
,
shortRhs
);
O
.
mtv
(
shortX
,
result
[
i
]);
...
...
@@ -393,14 +394,14 @@ template <int dim, class ctype, class LocalFiniteElement, class TargetSpace>
void
LocalGeodesicFEFunction
<
dim
,
ctype
,
LocalFiniteElement
,
TargetSpace
>::
evaluateFDDerivativeOfValueWRTCoefficient
(
const
Dune
::
FieldVector
<
ctype
,
dim
>&
local
,
int
coefficient
,
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>&
result
)
const
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>&
result
)
const
{
double
eps
=
1e-6
;
// the function value at the point where we are evaluating the derivative
const
Dune
::
FieldMatrix
<
double
,
spaceDim
,
embeddedDim
>
B
=
coefficients_
[
coefficient
].
orthonormalFrame
();
const
Dune
::
FieldMatrix
<
RT
,
spaceDim
,
embeddedDim
>
B
=
coefficients_
[
coefficient
].
orthonormalFrame
();
Dune
::
FieldMatrix
<
double
,
spaceDim
,
embeddedDim
>
interimResult
;
Dune
::
FieldMatrix
<
RT
,
spaceDim
,
embeddedDim
>
interimResult
;
std
::
vector
<
TargetSpace
>
cornersPlus
=
coefficients_
;
std
::
vector
<
TargetSpace
>
cornersMinus
=
coefficients_
;
...
...
@@ -449,7 +450,7 @@ evaluateDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>&
// the matrix that turns coordinates on the reference simplex into coordinates on the standard simplex
std
::
vector
<
Dune
::
FieldMatrix
<
ctype
,
1
,
dim
>
>
BNested
(
coefficients_
.
size
());
localFiniteElement_
.
localBasis
().
evaluateJacobian
(
local
,
BNested
);
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
double
,
1
,
1
>
>
B
(
coefficients_
.
size
(),
dim
);
Dune
::
Matrix
<
Dune
::
FieldMatrix
<
RT
,
1
,
1
>
>
B
(
coefficients_
.
size
(),
dim
);
for
(
size_t
i
=
0
;
i
<
coefficients_
.
size
();
i
++
)
for
(
size_t
j
=
0
;
j
<
dim
;
j
++
)
B
[
i
][
j
]
=
BNested
[
i
][
0
][
j
];
...
...
@@ -460,12 +461,12 @@ evaluateDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>&
AverageDistanceAssembler
<
TargetSpace
>
assembler
(
coefficients_
,
w
);
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
dFdq
(
0
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
dFdq
(
0
);
assembler
.
assembleEmbeddedHessian
(
q
,
dFdq
);
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
mixedDerivative
=
TargetSpace
::
secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument
(
coefficients_
[
coefficient
],
q
);
TensorSSD
<
double
,
embeddedDim
,
embeddedDim
>
dvDwF
(
coefficients_
.
size
());
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
mixedDerivative
=
TargetSpace
::
secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument
(
coefficients_
[
coefficient
],
q
);
TensorSSD
<
RT
,
embeddedDim
,
embeddedDim
>
dvDwF
(
coefficients_
.
size
());
dvDwF
=
0
;
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
...
...
@@ -475,34 +476,34 @@ evaluateDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>&
// dFDq is not invertible, if the target space is embedded into a higher-dimensional
// Euclidean space. Therefore we use its pseudo inverse. I don't think that is the
// best way, though.
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
dFdqPseudoInv
=
pseudoInverse
(
dFdq
,
q
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
dFdqPseudoInv
=
pseudoInverse
(
dFdq
,
q
);
//
Tensor3
<
double
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
dvDqF
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
dvDqF
=
TargetSpace
::
thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument
(
coefficients_
[
coefficient
],
q
);
dvDqF
=
w
[
coefficient
]
*
dvDqF
;
dvDqF
=
RT
(
w
[
coefficient
]
)
*
dvDqF
;
// Put it all together
// dvq[i][j] = \partial q_j / \partial v_i
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>
dvq
;
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
dvq
;
evaluateDerivativeOfValueWRTCoefficient
(
local
,
coefficient
,
dvq
);
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
dim
>
derivative
=
evaluateDerivative
(
local
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
dim
>
derivative
=
evaluateDerivative
(
local
);
Tensor3
<
double
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
dqdqF
;
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
embeddedDim
>
dqdqF
;
dqdqF
=
computeDqDqF
(
w
,
q
);
TensorSSD
<
double
,
embeddedDim
,
embeddedDim
>
dqdwF
(
coefficients_
.
size
());
TensorSSD
<
RT
,
embeddedDim
,
embeddedDim
>
dqdwF
(
coefficients_
.
size
());
for
(
size_t
k
=
0
;
k
<
coefficients_
.
size
();
k
++
)
{
Dune
::
FieldMatrix
<
ctype
,
embeddedDim
,
embeddedDim
>
hesse
=
TargetSpace
::
secondDerivativeOfDistanceSquaredWRTSecondArgument
(
coefficients_
[
k
],
q
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
embeddedDim
>
hesse
=
TargetSpace
::
secondDerivativeOfDistanceSquaredWRTSecondArgument
(
coefficients_
[
k
],
q
);
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
dqdwF
(
i
,
j
,
k
)
=
hesse
[
i
][
j
];
}
TensorSSD
<
double
,
embeddedDim
,
embeddedDim
>
dqdwF_times_dvq
(
coefficients_
.
size
());
TensorSSD
<
RT
,
embeddedDim
,
embeddedDim
>
dqdwF_times_dvq
(
coefficients_
.
size
());
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
for
(
size_t
k
=
0
;
k
<
coefficients_
.
size
();
k
++
)
{
...
...
@@ -511,9 +512,9 @@ evaluateDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>&
dqdwF_times_dvq
(
i
,
j
,
k
)
+=
dqdwF
(
l
,
j
,
k
)
*
dvq
[
i
][
l
];
}
Tensor3
<
double
,
embeddedDim
,
embeddedDim
,
dim
>
foo
;
Tensor3
<
RT
,
embeddedDim
,
embeddedDim
,
dim
>
foo
;
foo
=
-
1
*
dvDqF
*
derivative
-
(
dvq
*
dqdqF
)
*
derivative
;
TensorSSD
<
double
,
embeddedDim
,
embeddedDim
>
bar
(
dim
);
TensorSSD
<
RT
,
embeddedDim
,
embeddedDim
>
bar
(
dim
);
bar
=
dvDwF
*
B
+
dqdwF_times_dvq
*
B
;
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
...
...
@@ -521,7 +522,7 @@ evaluateDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>&
for
(
int
k
=
0
;
k
<
dim
;
k
++
)
foo
[
i
][
j
][
k
]
-=
bar
(
i
,
j
,
k
);
result
=
0
;
result
=
RT
(
0
)
;
for
(
int
i
=
0
;
i
<
embeddedDim
;
i
++
)
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
for
(
int
k
=
0
;
k
<
dim
;
k
++
)
...
...
@@ -553,8 +554,8 @@ evaluateFDDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>
LocalGeodesicFEFunction
<
dim
,
ctype
,
LocalFiniteElement
,
TargetSpace
>
fPlus
(
localFiniteElement_
,
cornersPlus
);
LocalGeodesicFEFunction
<
dim
,
ctype
,
LocalFiniteElement
,
TargetSpace
>
fMinus
(
localFiniteElement_
,
cornersMinus
);
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
dim
>
hPlus
=
fPlus
.
evaluateDerivative
(
local
);
Dune
::
FieldMatrix
<
double
,
embeddedDim
,
dim
>
hMinus
=
fMinus
.
evaluateDerivative
(
local
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
dim
>
hPlus
=
fPlus
.
evaluateDerivative
(
local
);
Dune
::
FieldMatrix
<
RT
,
embeddedDim
,
dim
>
hMinus
=
fMinus
.
evaluateDerivative
(
local
);
result
[
j
]
=
hPlus
;
result
[
j
]
-=
hMinus
;
...
...
@@ -565,7 +566,7 @@ evaluateFDDerivativeOfGradientWRTCoefficient(const Dune::FieldVector<ctype, dim>
for
(
int
j
=
0
;
j
<
embeddedDim
;
j
++
)
{
TargetSpace
q
=
evaluate
(
local
);
Dune
::
FieldVector
<
double
,
embeddedDim
>
foo
;
Dune
::
FieldVector
<
RT
,
embeddedDim
>
foo
;
for
(
int
l
=
0
;
l
<
dim
;
l
++
)
{
for
(
int
k
=
0
;
k
<
embeddedDim
;
k
++
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment