## Lame parameters for stvenantkirchhoff, E = mu(3*lambda + 2*mu)/(lambda + mu)
# corresponds to E = 71240 N/mm^2, nu=0.31
# mu = 2.7191e+4
# However, we use units N/m^2
# lambda = 4.4364e+4
mu = 2.7191e+4
lambda = 4.4364e+4
#Lame parameters for the cosserat material
#Lame parameters for the cosserat material
mu_cosserat = 2.7191e+4
mu_cosserat = 7.64e+6 #Parameters for E = 20.4 MPa, nu=0.335
lambda_cosserat = 4.4364e+4
lambda_cosserat = 1.55e+7
# Cosserat couple modulus
# Cosserat couple modulus
mu_c = 0
mu_c = 0
# Length scale parameter
# Length scale parameter
L_c = 0.6
L_c = 0.2
# Curvature exponent
# Curvature exponent
q = 2
q = 2
...
@@ -93,6 +91,26 @@ b1 = 1
...
@@ -93,6 +91,26 @@ b1 = 1
b2 = 1
b2 = 1
b3 = 1
b3 = 1
#
mooneyrivlin_10 = -1.67e+6 #184 2:1
mooneyrivlin_01 = 1.94e+6
mooneyrivlin_20 = 2.42e+6
mooneyrivlin_02 = 6.52e+6
mooneyrivlin_11 = -7.34e+6
mooneyrivlin_30 = 0
mooneyrivlin_21 = 0
mooneyrivlin_12 = 0
mooneyrivlin_03 = 0
# volume-preserving parameter
mooneyrivlin_k = 57e+6 # 184 2:1, mooneyrivlin_k = 57e+6 and mooneyrivlin_energy = log, the neumannValues = 27e4 0 0 result in a stretch of 30% of 45e4 10e4 2e4 in x-direction, so a stretch of 45e4*0.3 = 13.5e4
mooneyrivlin_energy = log # log, square or ciarlet; different ways to compute the Mooney-Rivlin-Energy
# ciarlet: Fomula from "Ciarlet: Three-Dimensional Elasticity", here no penalty term is
# log: Generalized Rivlin model or polynomial hyperelastic model, using 0.5*mooneyrivlin_k*log(det(∇φ)) as the volume-preserving penalty term
# square: Generalized Rivlin model or polynomial hyperelastic model, using mooneyrivlin_k*(det(∇φ)-1)² as the volume-preserving penalty term