Skip to content
Snippets Groups Projects

Feature/proximal newton solver

4 files
+ 12
23
Compare changes
  • Side-by-side
  • Inline
Files
4
@@ -9,10 +9,10 @@ structuredGrid = true
lower = 0 0 0
upper = 200 100 200
elements = 10 5 5
elements = 4 2 2
# Number of grid levels, all elements containing surfaceshell grid vertices will get adaptively refined
numLevels = 2
numLevels = 1
# When starting from a file, the stress-free configuration of the surfaceShell is read from a file, this file needs to match the *finest* grid level!
startFromFile = false
@@ -26,7 +26,7 @@ gridDeformation="[1.3*x[0], x[1], x[2]]"
# Boundary values
#############################################
problem = cantilever
dirichletValues = identity-dirichlet-values
### Python predicate specifying all Dirichlet grid vertices
# x is the vertex coordinate
@@ -34,7 +34,7 @@ dirichletVerticesPredicate = "x[0] < 0.01"
### Python predicate specifying all surfaceshell grid vertices, elements conataining these vertices will get adaptively refined
# x is the vertex coordinate
surfaceShellVerticesPredicate = "x[2] > 199.99"
surfaceShellVerticesPredicate = "x[2] > 199.99 and x[0] > 49.99 and x[0] < 150.01"
### Python predicate specifying all Neumann grid vertices
# x is the vertex coordinate
@@ -60,7 +60,7 @@ numHomotopySteps = 1
tolerance = 1e-3
# Max number of solver steps
maxSolverSteps = 300
maxSolverSteps = 1
# Measure convergence
instrumented = 0
@@ -70,7 +70,7 @@ instrumented = 0
#############################################
# initial regularization parameter
initialRegularization = 10000000000
initialRegularization = 1000000
#############################################
# Solver parameters specific for trust-region solver using multigrid solver
@@ -106,7 +106,7 @@ baseTolerance = 1e-8
# Material parameters
############################
energy = stvenantkirchhoff
energy = mooneyrivlin
## For the Wriggers L-shape example
[materialParameters]
@@ -122,13 +122,7 @@ surfaceShellParameters = surface-shell-parameters-1-3
mu_c = 0
# Length scale parameter
L_c = 0.2
# Curvature exponent
q = 2
# Shear correction factor
kappa = 1
L_c = 0.2
b1 = 1
b2 = 1
Loading