Skip to content
Snippets Groups Projects

Feature/stress plot

Merged Nebel, Lisa Julia requested to merge lnebel/dune-gfe:feature/stress-plot into master
3 files
+ 646
0
Compare changes
  • Side-by-side
  • Inline
Files
3
+ 308
0
#ifndef DUNE_GFE_SURFACECOSSERATSTRESSASSEMBLER_HH
#define DUNE_GFE_SURFACECOSSERATSTRESSASSEMBLER_HH
#include <dune/fufem/boundarypatch.hh>
#include <dune/gfe/linearalgebra.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/matrix-vector/transpose.hh>
namespace Dune::GFE {
/** \brief An assembler that can calculate the norms of specific stress tensors for each element for an output by film-on-substrate
\tparam BasisOrderD Basis used for the displacement
\tparam BasisOrderR Basis used for the rotation
\tparam TargetSpaceD Target space for the Displacement
\tparam TargetSpaceR Target space for the Rotation
*/
template <class BasisOrderD, class BasisOrderR, class TargetSpaceD, class TargetSpaceR>
class SurfaceCosseratStressAssembler
{
public:
const static int dim = TargetSpaceD::dimension;
using GridView = typename BasisOrderD::GridView;
using VectorD = std::vector<TargetSpaceD>;
using VectorR = std::vector<TargetSpaceR>;
BasisOrderD basisOrderD_;
BasisOrderR basisOrderR_;
SurfaceCosseratStressAssembler(const BasisOrderD basisOrderD,
const BasisOrderR basisOrderR)
: basisOrderD_(basisOrderD),
basisOrderR_(basisOrderR)
{}
/** \brief Calculate the norm of the 1st-Piola-Kirchhoff-Stress-Tensor and the Cauchy-Stress-Tensor for each element
The 1st-Piola-Kirchhoff-Stress-Tensor is the derivative of the energy density with respect to the deformation gradient
- Calculate the deformation gradient for each element using the basis functions and
their gradients; then add them up using the localConfiguration
- Evaluate the deformation gradient at each quadrature point using the respective quadrature rule with the given order
- Evaluate the density function and tape the evaluation - then use ADOLC to evaluate the derivative (∂/∂F) W(F)
- The derivative is then a dim x dim matrix
- Then calculate the final stressTensor of the element by averagin over the quadrature points using the quadrature
weights and the reference element volume
\param x Coefficient vector for the displacement
\param elasticDensity Energy density function
\param int Order of the quadrature rule
\param stressSubstrate1stPiolaKirchhoffTensor Vector containing the the 1st-Piola-Kirchhoff-Stress-Tensor for each element
\param stressSubstrateCauchyTensor Vector containing the Cauchy-Stress-Tensor for each element
*/
template <class Density>
void assembleSubstrateStress(
const VectorD x,
const Density* elasticDensity,
const int quadOrder,
std::vector<FieldMatrix<double,dim,dim>>& stressSubstrate1stPiolaKirchhoffTensor,
std::vector<FieldMatrix<double,dim,dim>>& stressSubstrateCauchyTensor)
{
std::cout << "Calculating the Frobenius norm of the 1st-Piola-Kirchhoff-Stress-Tensor ( (∂/∂F) W(F) )" << std::endl
<< "and the Frobenius norm of the Cauchy-Stress-Tensor (1/det(F) * (∂/∂F) W(F) * F^T) of the substrate..." << std::endl;
auto xFlat = Functions::istlVectorBackend(x);
static constexpr auto partitionType = Partitions::interiorBorder;
MultipleCodimMultipleGeomTypeMapper<GridView> elementMapper(basisOrderD_.gridView(),mcmgElementLayout());
stressSubstrate1stPiolaKirchhoffTensor.resize(elementMapper.size());
stressSubstrateCauchyTensor.resize(elementMapper.size());
for (const auto& element : elements(basisOrderD_.gridView(), partitionType))
{
auto localViewOrderD = basisOrderD_.localView();
localViewOrderD.bind(element);
size_t nDofsOrderD = localViewOrderD.tree().size();
// Extract values at this element
std::vector<double> localConfiguration(nDofsOrderD);
for (int i=0; i<nDofsOrderD; i++)
localConfiguration[i] = xFlat[localViewOrderD.index(i)]; //localViewOrderD.index(i) is a multi-index
//Store the reference gradient and the gradients for this element
const auto& lFEOrderD = localViewOrderD.tree().child(0).finiteElement();
std::vector<FieldMatrix<double,1,dim> > referenceGradients(lFEOrderD.size());
std::vector<FieldMatrix<double,1,dim> > gradients(lFEOrderD.size());
auto evaluateAtPoint = [&](FieldVector<double,3> pointGlobal, FieldVector<double,3> pointLocal) -> std::vector<FieldMatrix<double,dim,dim>>{
std::vector<FieldMatrix<double,dim,dim>> stressTensors(2);
const auto jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(pointLocal);
// Get gradients of shape functions
lFEOrderD.localBasis().evaluateJacobian(pointLocal, referenceGradients);
// Compute gradients of Base functions
for (size_t i=0; i<gradients.size(); ++i)
gradients[i] = referenceGradients[i] * transpose(jacobianInverseTransposed);
//jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);
// Deformation gradient in vector form
size_t nDoubles = dim*dim;
std::vector<double> deformationGradientFlat(nDoubles);
for (size_t i=0; i<nDoubles; i++)
deformationGradientFlat[i] = 0;
for (size_t i=0; i<gradients.size(); i++)
for (size_t j=0; j<dim; j++)
for (size_t k=0; k<dim; k++)
deformationGradientFlat[dim*j + k] += localConfiguration[ localViewOrderD.tree().child(j).localIndex(i)]*gradients[i][0][k];
double pureDensity = 0;
trace_on(0);
FieldMatrix<adouble,dim,dim> deformationGradient(0);
for (size_t j=0; j<dim; j++)
for (size_t k=0; k<dim; k++)
deformationGradient[j][k] <<= deformationGradientFlat[dim*j + k];
// Tape the actual calculation
adouble density = 0;
try {
density = (*elasticDensity)(pointGlobal, deformationGradient);
} catch (Exception &e) {
trace_off(0);
throw e;
}
density >>= pureDensity;
trace_off(0);
// Compute the actual gradient
std::vector<double> localStressFlat(nDoubles);
gradient(0,nDoubles,deformationGradientFlat.data(),localStressFlat.data());
FieldMatrix<double,dim,dim> localStress(0);
for (size_t j=0; j<dim; j++)
for (size_t k=0; k<dim; k++)
localStress[j][k] = localStressFlat[dim*j + k];
stressTensors[0] = localStress; // 1st-Piola-Kirchhoff-Stress-Tensor
FieldMatrix<double,dim,dim> deformationGradientTransposed(0);
for (size_t j=0; j<dim; j++)
for (size_t k=0; k<dim; k++)
deformationGradient[j][k] >>= deformationGradientTransposed[k][j];
localStress /= deformationGradientTransposed.determinant();
localStress = localStress * deformationGradientTransposed;
stressTensors[1] = localStress; // Cauchy-Stress-Tensor
return stressTensors;
};
//Call evaluateAtPoint for all points in the quadrature rule
const auto& quad = Dune::QuadratureRules<double, dim>::rule(element.type(), quadOrder);
stressSubstrate1stPiolaKirchhoffTensor[elementMapper.index(element)] = 0;
stressSubstrateCauchyTensor[elementMapper.index(element)] = 0;
for (size_t pt=0; pt<quad.size(); pt++) {
auto pointLocal = quad[pt].position();
auto pointGlobal = element.geometry().global(pointLocal);
auto stressTensors = evaluateAtPoint(pointGlobal, pointLocal);
stressSubstrate1stPiolaKirchhoffTensor[elementMapper.index(element)] += stressTensors[0] * quad[pt].weight()/referenceElement(element).volume();
stressSubstrateCauchyTensor[elementMapper.index(element)] += stressTensors[1] * quad[pt].weight()/referenceElement(element).volume();
}
}
}
/** \brief Calculate the norm of the Biot-Type-Stress-Tensor of the shell
The formula for Biot-Type-Stress-Tensor of the Cosserat shell given by (4.11) in
Ghiba, Bîrsan, Lewintan, Neff, March 2020: "The isotropic Cosserat shell model including terms up to $O(h^5)$. Part I: Derivation in matrix notation"
\param rot Coefficient vector for the rotation
\param x Coefficient vector for the displacement
\param xInitial Coefficient vector for the stress-free configuration of the shell, used to calculate nablaTheta
\param lameF Function assinging the lamé parameters to a given point
\param mu_c Cosserat couple modulus
\param shellBoundary BoundaryPatch containing the elements that actually belong to the shell
\param order Order of the quadrature rule
\param stressShellBiotTensor Vector containing the Biot-Stress-Tensor for each element
*/
void assembleShellStress(
const VectorR rot,
const VectorD x,
const VectorD xInitial,
const std::function<Dune::FieldVector<double,2>(Dune::FieldVector<double,dim>)> lameF,
const double mu_c,
const BoundaryPatch<GridView> shellBoundary,
const int quadOrder,
std::vector<FieldMatrix<double,dim,dim>>& stressShellBiotTensor)
{
std::cout << "Calculating the Frobenius norm of the Biot-Type-Stress-Tensor of the shell..." << std::endl;
auto xFlat = Functions::istlVectorBackend(x);
auto xInitialFlat = Functions::istlVectorBackend(xInitial);
MultipleCodimMultipleGeomTypeMapper<GridView> elementMapper(basisOrderD_.gridView(),mcmgElementLayout());
stressShellBiotTensor.resize(elementMapper.size());
static constexpr auto partitionType = Partitions::interiorBorder;
for (const auto& element : elements(basisOrderD_.gridView(), partitionType))
{
stressShellBiotTensor[elementMapper.index(element)] = 0;
int intersectionCounter = 0;
for (auto&& it : intersections(shellBoundary.gridView(), element)) {
FieldMatrix<double,dim,dim> stressTensorThisIntersection(0);
//Continue if the element does not intersect with the shell boundary
if (not shellBoundary.contains(it))
continue;
//LocalView for the basisOrderD_
auto localViewOrderD = basisOrderD_.localView();
localViewOrderD.bind(element);
size_t nDofsOrderD = localViewOrderD.tree().size();
// Extract local configuration at this element
std::vector<double> localConfiguration(nDofsOrderD);
std::vector<double> localConfigurationInitial(nDofsOrderD);
for (int i=0; i<nDofsOrderD; i++) {
localConfiguration[i] = xFlat[localViewOrderD.index(i)];
localConfigurationInitial[i] = xInitialFlat[localViewOrderD.index(i)];
}
const auto& lFEOrderD = localViewOrderD.tree().child(0).finiteElement();
//Store the reference gradient and the gradients for *this element*
std::vector<FieldMatrix<double,1,dim> > referenceGradients(lFEOrderD.size());
std::vector<FieldMatrix<double,1,dim> > gradients(lFEOrderD.size());
//LocalView for the basisOrderR_
auto localViewOrderR = basisOrderR_.localView();
localViewOrderR.bind(element);
const auto& lFEOrderR = localViewOrderR.tree().child(0).finiteElement();
VectorR localConfigurationRot(lFEOrderR.size());
for (int i=0; i<localConfigurationRot.size(); i++)
localConfigurationRot[i] = rot[localViewOrderR.index(i)[0]];//localViewOrderR.index(i) is a multiindex, its first entry is the actual index
typedef LocalGeodesicFEFunction<dim, double, decltype(lFEOrderR), TargetSpaceR> LocalGFEFunctionType;
LocalGFEFunctionType localGeodesicFEFunction(lFEOrderR,localConfigurationRot);
auto evaluateAtPoint = [&](FieldVector<double,3> pointGlobal, FieldVector<double,3> pointLocal3d) -> FieldMatrix<double,dim,dim>{
Dune::FieldMatrix<double,dim,dim> nablaTheta;
const auto jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(pointLocal3d);
// Get gradients of shape functions
lFEOrderD.localBasis().evaluateJacobian(pointLocal3d, referenceGradients);
// Compute gradients of Base functions at this element
for (size_t i=0; i<gradients.size(); i++)
gradients[i] = referenceGradients[i] * transpose(jacobianInverseTransposed);
//jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);
// Deformation gradient - call this U_es_minus_Id already
FieldMatrix<double,dim,dim> U_es_minus_Id(0);
for (size_t i=0; i<gradients.size(); i++)
for (size_t j=0; j<dim; j++){
U_es_minus_Id[j].axpy(localConfiguration[ localViewOrderD.tree().child(j).localIndex(i)],gradients[i][0]);
nablaTheta[j].axpy(localConfigurationInitial[ localViewOrderD.tree().child(j).localIndex(i)],gradients[i][0]);
}
TargetSpaceR value = localGeodesicFEFunction.evaluate(pointLocal3d);
FieldMatrix<double,dim,dim> rotationMatrix(0);
FieldMatrix<double,dim,dim> rotationMatrixTransposed(0);
value.matrix(rotationMatrix);
MatrixVector::transpose(rotationMatrix, rotationMatrixTransposed);
U_es_minus_Id.leftmultiply(rotationMatrixTransposed); // Attention: The rotation here is already is Q_e, we don't have to multiply with Q_0!!!
nablaTheta.invert();
U_es_minus_Id.rightmultiply(nablaTheta);
for (size_t j = 0; j < dim; j++)
U_es_minus_Id[j][j] -= 1.0;
auto lameConstants = lameF(pointGlobal);
double mu = lameConstants[0];
double lambda = lameConstants[1];
FieldMatrix<double,dim,dim> localStressShell(0);
localStressShell = 2*mu*GFE::sym(U_es_minus_Id) + 2*mu_c*GFE::skew(U_es_minus_Id);
for (size_t j = 0; j < dim; j++)
localStressShell[j][j] += lambda*GFE::trace(GFE::sym(U_es_minus_Id));
return localStressShell;
};
//Call evaluateAtPoint for all points in the quadrature rule
const auto& quad = Dune::QuadratureRules<double, dim-1>::rule(it.type(), quadOrder); //Quad rule on the boundary
for (size_t pt=0; pt<quad.size(); pt++) {
auto pointLocal2d = quad[pt].position();
auto pointLocal3d = it.geometryInInside().global(pointLocal2d);
auto pointGlobal = it.geometry().global(pointLocal2d);
auto stressTensor = evaluateAtPoint(pointGlobal, pointLocal3d);
stressTensorThisIntersection += stressTensor * quad[pt].weight()/referenceElement(it.inside()).volume();
}
stressShellBiotTensor[elementMapper.index(element)] += stressTensorThisIntersection;
intersectionCounter++;
}
if (intersectionCounter >= 1)
stressShellBiotTensor[elementMapper.index(element)] /= intersectionCounter;
}
}
};
}
#endif
\ No newline at end of file
Loading