Skip to content
Snippets Groups Projects
Commit 2e53afe8 authored by felix's avatar felix
Browse files

small fixes

parent b923fc99
No related branches found
No related tags found
No related merge requests found
......@@ -19,7 +19,7 @@
\usepackage{listings}
\lstMakeShortInline[columns=fixed]|
\usepackage[section]{placeins} % makes sure that the figures stay within their section
\usepackage[subsection]{placeins} % makes sure that the figures stay within their section
\setmainfont{Latin Modern Roman}
\setsansfont{Latin Modern Sans}
......
%! TEX program = lualatex
\input{.maindir/tex/header/preamble-section}
\docStart
\title{Dokumententitel}
\title{Project 3: Laminar Flow}
\author{Felix Hilsky}
\maketitle
% use \textinput as described in /header and _TEMPLATE
......
......@@ -18,7 +18,7 @@ In the corners of the area around the cylinder the angle of the outermost cells
\begin{figure}[htpb]
\centering
\includegraphics[width=0.8\linewidth]{.maindir/zeichnungen/mesh}
\includegraphics[width=\linewidth]{.maindir/zeichnungen/mesh}
\caption{The mesh for $N = 6$.% With $2$ correctors, $N=8$ does not work (Courant number blows up), but with $4$ correctors, it does work.
}%
\label{fig:mesh}
......
......@@ -12,11 +12,11 @@ consider the definition of the Reynolds number:
where $d = \SI{0.1}{\metre}$ is the diameter of the cylinder and $ν = \SI{10e-3}{\square\metre\per\second}$ is the kinematic viscosity\footnote{\url{https://en.wikipedia.org/wiki/Viscosity\#Kinematic_viscosity}}.
Therefore
\begin{align*}
\bar u = \frac{\Rey ν}{d} = \frac{\Rey · \SI{10e-3}{\square\metre\per\second}}{\SI{0.1}{\metre}} = \frac{\Rey}{100} \si{\metre\per\second} \\
\bar u = \SI{0.2}{\metre\per\second} \quad \text{for } \Rey = 20 \\
\bar u = \SI{1}{\metre\per\second} \quad \text{for } \Rey = 100
\bar u &= \frac{\Rey ν}{d} = \frac{\Rey · \SI{10e-3}{\square\metre\per\second}}{\SI{0.1}{\metre}} = \frac{\Rey}{100} \si{\metre\per\second} \\
\bar u &= \SI{0.2}{\metre\per\second} & \text{for } \Rey &= 20 \\
\bar u &= \SI{1}{\metre\per\second} & \text{for } \Rey &= 100
\end{align*}
This mean velocity needs to be changed in |0/U| in the code.
It is not used if it lays in |system/codeDict|. (Ignored without error message or warning.)
The mean velocity cannot be moved to |scale| as a variable because then the C++ code resuts in an error.
The mean velocity cannot be moved to |scale| as a variable because then the C++ code results in an error.
\docEnd
......@@ -8,7 +8,7 @@ The literature claims that at a Reynolds number of $\Rey = 100$ ($\bar u = \SI{1
My experiments did not support this claim.
With $u = \SI{1}{\metre\per\second}$ a steady state is reached before \SI{0.86}{\second}.
This steady state can be seen in figure \ref{fig:unsteady}.
This steady state can be seen in figure \ref{fig:unsteadystate}.
\begin{figure}[htpb]
\centering
\newcommand{\picwidth}{0.95\linewidth}
......@@ -16,11 +16,11 @@ This steady state can be seen in figure \ref{fig:unsteady}.
\includegraphics[width=\picwidth]{.maindir/zeichnungen/100_u_y}
\includegraphics[width=\picwidth]{.maindir/zeichnungen/100_p}
\caption{The steady state is reached at time \SI{0.6}{\second}.
Those images are from $t ="\SI{0.86}{\second}$.
Those images are from $t = \SI{0.86}{\second}$.
From top to bottom we have the velocity in flow direction,
the velocity perpendicular to it and the pressure.%
}
\label{fig:steadystate}
\label{fig:unsteadystate}
\end{figure}
The recirculation zone in this case is approximately \SIrange{25}{30}{\centi\metre} long.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment