Skip to content
Snippets Groups Projects
Cell-Problem-New.cc 31.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    #include <config.h>
    #include <array>
    #include <vector>
    #include <fstream>
    
    #include <iostream>
    #include <dune/common/indices.hh>
    #include <dune/common/bitsetvector.hh>
    #include <dune/common/parametertree.hh>
    #include <dune/common/parametertreeparser.hh>
    #include <dune/common/float_cmp.hh>
    #include <dune/common/math.hh>
    
    
    #include <dune/geometry/quadraturerules.hh>
    
    #include <dune/grid/uggrid.hh>
    #include <dune/grid/yaspgrid.hh>
    // #include <dune/grid/utility/structuredgridfactory.hh> //TEST
    #include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
    
    #include <dune/istl/matrix.hh>
    #include <dune/istl/bcrsmatrix.hh>
    #include <dune/istl/multitypeblockmatrix.hh>
    #include <dune/istl/multitypeblockvector.hh>
    #include <dune/istl/matrixindexset.hh>
    #include <dune/istl/solvers.hh>
    #include <dune/istl/spqr.hh>
    #include <dune/istl/preconditioners.hh>
    #include <dune/istl/io.hh>
    
    #include <dune/functions/functionspacebases/interpolate.hh>
    #include <dune/functions/backends/istlvectorbackend.hh>
    #include <dune/functions/functionspacebases/powerbasis.hh>
    #include <dune/functions/functionspacebases/compositebasis.hh>
    #include <dune/functions/functionspacebases/lagrangebasis.hh>
    #include <dune/functions/functionspacebases/periodicbasis.hh>
    #include <dune/functions/functionspacebases/subspacebasis.hh>
    #include <dune/functions/functionspacebases/boundarydofs.hh>
    #include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
    #include <dune/functions/gridfunctions/gridviewfunction.hh>
    #include <dune/functions/functionspacebases/hierarchicvectorwrapper.hh>
    
    #include <dune/common/fvector.hh>
    #include <dune/common/fmatrix.hh>
    
    #include <dune/microstructure/prestrain_material_geometry.hh>
    #include <dune/microstructure/matrix_operations.hh>
    #include <dune/microstructure/vtk_filler.hh>    //TEST
    #include <dune/microstructure/CorrectorComputer.hh>    
    #include <dune/microstructure/EffectiveQuantitiesComputer.hh>  
    #include <dune/microstructure/prestrainedMaterial.hh>  
    
    #include <dune/solvers/solvers/umfpacksolver.hh>  //TEST 
    #include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number 
    
    // #include <dune/fufem/discretizationerror.hh>
    #include <dune/fufem/dunepython.hh>
    #include <python2.7/Python.h>
    
    // #include <boost/multiprecision/cpp_dec_float.hpp>
    #include <any>
    #include <variant>
    #include <string>
    #include <iomanip>   // needed when working with relative paths e.g. from python-scripts
    
    using namespace Dune;
    using namespace MatrixOperations;
    
    //////////////////////////////////////////////////////////////////////
    // Helper functions for Table-Output
    //////////////////////////////////////////////////////////////////////
    /*! Center-aligns string within a field of width w. Pads with blank spaces
        to enforce alignment. */
    std::string center(const std::string s, const int w) {
        std::stringstream ss, spaces;
        int padding = w - s.size();                 // count excess room to pad
        for(int i=0; i<padding/2; ++i)
            spaces << " ";
        ss << spaces.str() << s << spaces.str();    // format with padding
        if(padding>0 && padding%2!=0)               // if odd #, add 1 space
            ss << " ";
        return ss.str();
    }
    
    /* Convert double to string with specified number of places after the decimal
       and left padding. */
    template<class type>
    std::string prd(const type x, const int decDigits, const int width) {
        std::stringstream ss;
    //     ss << std::fixed << std::right;
        ss << std::scientific << std::right;                     // Use scientific Output!
        ss.fill(' ');        // fill space around displayed #
        ss.width(width);     // set  width around displayed #
        ss.precision(decDigits); // set # places after decimal
        ss << x;
        return ss.str();
    }
    
    //////////////////////////////////////////////////
    //   Infrastructure for handling periodicity
    //////////////////////////////////////////////////
    // Check whether two points are equal on R/Z x R/Z x R
    auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3>& y)
                    {
                        return ( (FloatCmp::eq(x[0],y[0]) or FloatCmp::eq(x[0]+1,y[0]) or FloatCmp::eq(x[0]-1,y[0]))
                                and (FloatCmp::eq(x[1],y[1]) or FloatCmp::eq(x[1]+1,y[1]) or FloatCmp::eq(x[1]-1,y[1]))
                                and (FloatCmp::eq(x[2],y[2]))
                            );
                    };
    
    
    
    // // a function:
    // int half(int x, int y) {return x/2+y/2;}
    
    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    int main(int argc, char *argv[])
    {
      MPIHelper::instance(argc, argv);
      
      Dune::Timer globalTimer;
    
      ParameterTree parameterSet;
      if (argc < 2)
        ParameterTreeParser::readINITree("../../inputs/cellsolver.parset", parameterSet);
      else
      {
        ParameterTreeParser::readINITree(argv[1], parameterSet);
        ParameterTreeParser::readOptions(argc, argv, parameterSet);
      }
    
      //--- Output setter
      std::string outputPath = parameterSet.get("outputPath", "../../outputs");
    
      //--- setup Log-File
      std::fstream log;
      log.open(outputPath + "/output.txt" ,std::ios::out);
    
      std::cout << "outputPath:" << outputPath << std::endl;
      
    //   parameterSet.report(log); // short Alternativ
      
        //--- Get Path for Material/Geometry functions
        std::string geometryFunctionPath = parameterSet.get<std::string>("geometryFunctionPath");
        //--- Start Python interpreter
        Python::start();
        Python::Reference main = Python::import("__main__");
        Python::run("import math");
        Python::runStream()
            << std::endl << "import sys"
            << std::endl << "sys.path.append('" << geometryFunctionPath << "')"
            << std::endl;
    
    
      constexpr int dim = 3;
      constexpr int dimWorld = 3;
    
      // Debug/Print Options 
      bool print_debug = parameterSet.get<bool>("print_debug", false);
    
      // VTK-write options
      bool write_materialFunctions   = parameterSet.get<bool>("write_materialFunctions", false);
      bool write_prestrainFunctions  = parameterSet.get<bool>("write_prestrainFunctions", false);
    
    
    
    
      ///////////////////////////////////
      // Get Parameters/Data
      ///////////////////////////////////
      double gamma = parameterSet.get<double>("gamma",1.0);   // ratio dimension reduction to homogenization
      double alpha = parameterSet.get<double>("alpha", 2.0);
      double theta = parameterSet.get<double>("theta",1.0/4.0); 
      ///////////////////////////////////
      // Get Material Parameters
      ///////////////////////////////////
      std::string imp = parameterSet.get<std::string>("material_prestrain_imp", "analytical_Example");
      log << "material_prestrain used: "<< imp  << std::endl;
      double beta = parameterSet.get<double>("beta",2.0); 
      double mu1 = parameterSet.get<double>("mu1",1.0);;
      double mu2 = beta*mu1;
      double lambda1 = parameterSet.get<double>("lambda1",0.0);;
      double lambda2 = beta*lambda1;
      
    
      if(imp == "material_neukamm")
      {
          std::cout <<"mu: " << parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl;
          std::cout <<"lambda: " << parameterSet.get<std::array<double,3>>("lambda", {1.0,3.0,2.0}) << std::endl;
      }
      else
      {
          std::cout <<"mu: "     <<  parameterSet.get<double>("mu1",1.0) << std::endl;
          std::cout <<"lambda: " <<  parameterSet.get<double>("lambda1",0.0) << std::endl;
      }
      
      ///////////////////////////////////
      // Get Prestrain/Parameters
      ///////////////////////////////////
      auto prestrainImp = PrestrainImp<dim>(); //NEW 
      auto B_Term = prestrainImp.getPrestrain(parameterSet);
    
      log << "----- Input Parameters -----: " << std::endl;
      log << "alpha: " << alpha << std::endl;
      log << "gamma: " << gamma << std::endl;
      log << "theta: " << theta << std::endl;
      log << "beta: " << beta << std::endl;
      log << "material parameters: " << std::endl;
      log << "mu1: " << mu1 << "\nmu2: " << mu2 << std::endl;
      log << "lambda1: " << lambda1 <<"\nlambda2: " << lambda2 << std::endl;
      log << "----------------------------: " << std::endl;
    
      ///////////////////////////////////
      // Generate the grid
      ///////////////////////////////////
      // --- Corrector Problem Domain (-1/2,1/2)^3:
      FieldVector<double,dim> lower({-1.0/2.0, -1.0/2.0, -1.0/2.0});
      FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0});
    
      std::array<int,2> numLevels = parameterSet.get<std::array<int,2>>("numLevels", {1,3});
      int levelCounter = 0;
       
      
      ///////////////////////////////////
      // Create Data Storage
      ///////////////////////////////////
      //--- Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4  L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1)
      std::vector<std::variant<std::string, size_t , double>> Storage_Error;
      //--- Storage:: | level | q1 | q2 | q3 | q12 | q23 | b1 | b2 | b3 |           
      std::vector<std::variant<std::string, size_t , double>> Storage_Quantities;         
    
      //   for(const size_t &level : numLevels)                             // explixite Angabe der levels.. {2,4}
      for(size_t level = numLevels[0] ; level <= numLevels[1]; level++)     // levels von bis.. [2,4]
      {
        std::cout << " ----------------------------------" << std::endl;
        std::cout << "GridLevel: " << level << std::endl;
        std::cout << " ----------------------------------" << std::endl;
    
        Storage_Error.push_back(level);
        Storage_Quantities.push_back(level);
        std::array<int, dim> nElements = {(int)std::pow(2,level) ,(int)std::pow(2,level) ,(int)std::pow(2,level)};
        std::cout << "Number of Grid-Elements in each direction: " << nElements << std::endl;
        log << "Number of Grid-Elements in each direction: " << nElements << std::endl;
    
        using CellGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >;
        CellGridType grid_CE(lower,upper,nElements);
        using GridView = CellGridType::LeafGridView;
        const GridView gridView_CE = grid_CE.leafGridView();
        if(print_debug)
           std::cout << "Host grid has " << gridView_CE.size(dim) << " vertices." << std::endl;
        
        // //not needed
        using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
        using Domain = GridView::Codim<0>::Geometry::GlobalCoordinate;
        using Func2Tensor = std::function< MatrixRT(const Domain&) >;
        // using Func2Tensor = std::function< MatrixRT(const Domain&) >;
        // using VectorCT = BlockVector<FieldVector<double,1> >;
        // using MatrixCT = BCRSMatrix<FieldMatrix<double,1,1> >;
    
        ///////////////////////////////////
        //  Create Lambda-Functions for material Parameters depending on microstructure
        ///////////////////////////////////
        auto materialImp = IsotropicMaterialImp<dim>();
        auto muTerm      = materialImp.getMu(parameterSet);
        auto lambdaTerm  = materialImp.getLambda(parameterSet);
    
        auto muGridF  = Dune::Functions::makeGridViewFunction(muTerm, gridView_CE);
        auto muLocal = localFunction(muGridF);
        auto lambdaGridF  = Dune::Functions::makeGridViewFunction(lambdaTerm, gridView_CE);
        auto lambdaLocal = localFunction(lambdaGridF);
    
    
        //--- Choose a finite element space for Cell Problem
        using namespace Functions::BasisFactory;
        Functions::BasisFactory::Experimental::PeriodicIndexSet periodicIndices;
    
        //--- get PeriodicIndices for periodicBasis (Don't do the following in real life: It has quadratic run-time in the number of vertices.)
        for (const auto& v1 : vertices(gridView_CE))
            for (const auto& v2 : vertices(gridView_CE))
                if (equivalent(v1.geometry().corner(0), v2.geometry().corner(0)))
                {
                    periodicIndices.unifyIndexPair({gridView_CE.indexSet().index(v1)}, {gridView_CE.indexSet().index(v2)});
                }
    
        //--- setup first order periodic Lagrange-Basis
        auto Basis_CE = makeBasis(
            gridView_CE,
            power<dim>(                                                                             // eig dimworld?!?! 
            Functions::BasisFactory::Experimental::periodic(lagrange<1>(), periodicIndices),
            flatLexicographic()
            //blockedInterleaved()   // Not Implemented
            ));     
        if(print_debug)
           std::cout << "power<periodic> basis has " << Basis_CE.dimension() << " degrees of freedom" << std::endl;
        
    
    
    
    
        //TEST 
        //Read from Parset...
        // int Phases = parameterSet.get<int>("Phases", 3);
    
    
        std::string materialFunctionName = parameterSet.get<std::string>("materialFunction", "material");
        Python::Module module = Python::import(materialFunctionName);
        // auto indicatorFunction = Python::make_function<double>(module.get("f"));
        // Func2Tensor indicatorFunction = Python::make_function<double>(module.get("f"));
        // auto materialFunction_ = Python::make_function<double>(module.get("f"));
        // auto materialFunction_ = Python::make_function<double>(module.get("f"));
        auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f"));
    
        int Phases;
        module.get("Phases").toC<int>(Phases);
        std::cout << "Number of Phases used:" << Phases << std::endl;
    
    
        // std::cout << typeid(mu_).name() << '\n';
    
    
        //---- Get mu/lambda values (for isotropic material) from Material-file
        FieldVector<double,3> mu_(0);
        module.get("mu_").toC<FieldVector<double,3>>(mu_);
        printvector(std::cout, mu_ , "mu_", "--");
        FieldVector<double,3> lambda_(0);
        module.get("lambda_").toC<FieldVector<double,3>>(lambda_);
        printvector(std::cout, lambda_ , "lambda_", "--");
    
    
        //////////////////////////////////////////////////////////////////////////////////////////////////////////
        // TESTING PRESTRAINEDMATERIAL.HH:
        using Func2TensorParam = std::function< MatrixRT(const MatrixRT& ,const Domain&) >;
        
        auto material_ = prestrainedMaterial(gridView_CE,parameterSet);
        // Func2Tensor elasticityTensor = material_.getElasticityTensor();
        // auto elasticityTensor = material_.getElasticityTensor();
        // Func2TensorParam elasticityTensor_ = *material_.getElasticityTensor();
        auto elasticityTensor_ = material_.getElasticityTensor();
    
        Func2TensorParam TestTensor = Python::make_function<MatrixRT>(module.get("H"));
    
        // std::cout << "decltype(elasticityTensor_) " << decltype(elasticityTensor_) << std::endl;
    
    
        std::cout <<"typeid(elasticityTensor).name() :" <<  typeid(elasticityTensor_).name() << '\n';
        std::cout << "typeid(TestTensor).name() :" << typeid(TestTensor).name() << '\n';
    
        using MatrixFunc = std::function< MatrixRT(const MatrixRT&) >;
        // std::cout << "Import NOW:" << std::endl;
        // MatrixFunc symTest = Python::make_function<MatrixRT>(module.get("sym"));
    
        // using MatrixDomainFunc = std::function< MatrixRT(const MatrixRT&,const Domain&)>;
       // // MatrixFunc elasticityTensor = Python::make_function<MatrixRT>(module.get("L"));
    
        // auto elasticityTensorGVF  = Dune::Functions::makeGridViewFunction(elasticityTensor , Basis_CE.gridView());
        // auto localElasticityTensor = localFunction(elasticityTensorGVF);
    
        // Func2Tensor forceTerm = [] (const Domain& x) {
        //                         return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};    //TODO könnte hier sign übergeben?
        //                     };
    
        // auto loadGVF  = Dune::Functions::makeGridViewFunction(forceTerm, Basis_CE.gridView());
        // auto loadFunctional = localFunction(loadGVF);  
    
        MatrixRT G1_ {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}};
        // auto xu = symTest(G1_);
        // std::cout << "TEST NOW:" << std::endl;
        // printmatrix(std::cout, symTest(G1_), "symTest(G1_)", "--");
    
        // auto TestTensorGVF  = Dune::Functions::makeGridViewFunction(TestTensor , Basis_CE.gridView());
        // auto localTestTensor = localFunction(TestTensorGVF );
    
    
        // printmatrix(std::cout, elasticityTensor(G1_), "elasticityTensor(G1_)", "--");
        // auto temp = elasticityTensor(G1_);
    
        
    
        for (const auto& element : elements(Basis_CE.gridView()))
        {
      
            int orderQR = 2;
            const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR);
            for (const auto& quadPoint : quad)
            {
                const auto& quadPos = quadPoint.position();
                // std::cout << "quadPos : " << quadPos  << std::endl;
                auto temp = TestTensor(G1_, element.geometry().global(quadPos));
                auto temp2 = elasticityTensor_(G1_, element.geometry().global(quadPos));
                // std::cout << "material_.applyElasticityTensor:" << std::endl;
                auto tmp3 = material_.applyElasticityTensor(G1_, element.geometry().global(quadPos));
                // printmatrix(std::cout, tmp3, "tmp3", "--");
            }
        }
    
    
    
        // for (auto&& vertex : vertices(gridView_CE))
        // {
        //     std::cout << "vertex.geometry().corner(0):" << vertex.geometry().corner(0)<< std::endl;
        //     auto tmp = vertex.geometry().corner(0);
        //     auto temp = elasticityTensor(tmp);
        //     // std::cout << "materialFunction_(vertex.geometry().corner(0))", materialFunction_(vertex.geometry().corner(0)) << std::endl;
        //     // printmatrix(std::cout, localElasticityTensor(G1_,tmp), "localElasticityTensor(vertex.geometry().corner(0))", "--");
        // }
    
        
    
        // std::function<int(int,int)> fn1 = half; 
        // std::cout << "fn1(60,20): " << fn1(60,20) << '\n';
    
    
        // std::cout << typeid(elasticityTensorGVF).name() << '\n';
        // std::cout << typeid(localElasticityTensor).name() << '\n';
    
    
        // ParameterTree parameterSet_2;
        // ParameterTreeParser::readINITree(geometryFunctionPath + "/"+ materialFunctionName + ".py", parameterSet_2);
    
        // auto lu = parameterSet_2.get<FieldVector<double,3>>("lu", {1.0,3.0,2.0});
        // std::cout <<"lu[1]: " << lu[1]<< std::endl;
        // std::cout <<"lu: " << parameterSet_2.get<std::array<double,3>>("lu", {1.0,3.0,2.0}) << std::endl;
        
        // auto mU_ = module.evaluate(parameterSet_2.get<std::string>("lu", "[1,2,3]"));
        // std::cout << "typeid(mU_).name()" << typeid(mU_.operator()()).name() << '\n';
    
    
        // for (auto&& vertex : vertices(gridView_CE))
        // {
        //     std::cout << "vertex.geometry().corner(0):" << vertex.geometry().corner(0)<< std::endl;
        //     // std::cout << "materialFunction_(vertex.geometry().corner(0))", materialFunction_(vertex.geometry().corner(0)) << std::endl;
        //     printvector(std::cout, materialFunction_(vertex.geometry().corner(0)), "materialFunction_(vertex.geometry().corner(0))", "--");
        // }
        // std::cout << "materialFunction_({0.0,0.0,0.0})", materialFunction_({0.0,0.0,0.0}) << std::endl;
        
    
    
        // --------------------------------------------------------------
    
        //TODO// Phasen anhand von Mu bestimmen?
        //TODO: DUNE_THROW(Exception, "Inconsistent choice of interpolation method");   if number of Phases != mu/lambda parameters
    
        //FÜR L GARNICHT NÖTIG DENN RÜCKGABETYPE IS IMMER MATRIXRT!?!:
        // BEi materialfunction (isotopic) reicht auch FieldVector<double,2> für lambda/mu
    
        // switch (Phases)
        // {
        //     case 1: //homogeneous material
        //     {
        //       std::cout << "Phase - 1" << std::endl;
        //       auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f"));
        //       break;
        //     }
        //     case 2: 
        //     {
        //       std::cout << "Phase - 1" << std::endl;
        //       auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f"));
        //       break;
        //     }
        //     case 3:
        //     {
        //       std::cout << "Phase - 3" << std::endl;
        //       auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f"));
        //       break;
        //     }
        // }
        
    
        // switch (Phases)
        // {
        //     case 1: //homogeneous material
        //     {
        //       std::cout << "Phases - 1" << std::endl;
        //       std::array<double,1> mu_ = parameterSet.get<std::array<double,1>>("mu", {1.0});
        //       Python::Module module = Python::import(materialFunction);
        //       auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
        //       auto muTerm = [mu_] (const Domain& x) {return mu_;};
        //       break;
        //     }
        //     case 2: 
        //     {
        //       std::cout << "Phases - 2" << std::endl;
        //       std::array<double,2> mu_ = parameterSet.get<std::array<double,2>>("mu", {1.0,3.0});
        //       Python::Module module = Python::import(materialFunction);
        //       auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
        //       auto muTerm = [mu_,indicatorFunction] (const Domain& x) 
    	// 	      {
        //         if (indicatorFunction(x) == 1) 
        //           return mu_[0];
        //         else 
        //           return mu_[1];
        //         };
        //       break;
        //     }
        //     case 3:
        //     {
        //       std::cout << "Phases - 3" << std::endl;
        //       std::array<double,3> mu_ = parameterSet.get<std::array<double,3>>("mu", {1.0,3.0, 5.0});
        //       Python::Module module = Python::import(materialFunction);
        //       auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
        //       auto muTerm = [mu_,indicatorFunction] (const Domain& x) 
        //             {
        //               if (indicatorFunction(x) == 1) 
        //                 return mu_[0];
        //               else if (indicatorFunction(x) == 2) 
        //                 return mu_[1];
        //               else 
        //                 return mu_[2];
        //             };
        //       break;
        //     }
        // }
    
        
    
        
        //TEST 
    //     std::cout << "Test crossSectionDirectionScaling:" << std::endl;
    /*    
        MatrixRT T {{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}};
        printmatrix(std::cout, T, "Matrix T", "--");
        
        auto ST = crossSectionDirectionScaling((1.0/5.0),T);
        printmatrix(std::cout, ST, "scaled Matrix T", "--");*/
        
        //TEST 
    //     auto QuadraticForm = [] (const double mu, const double lambda, const MatrixRT& M) {
    // 
    //                                 return lambda*std::pow(trace(M),2) + 2*mu*pow(norm(sym(M)),2);
    //                         };
    
    
        //------------------------------------------------------------------------------------------------
        //--- compute Correctors
        // auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet);
        auto correctorComputer = CorrectorComputer(Basis_CE, material_, muTerm, lambdaTerm, gamma, log, parameterSet);
        correctorComputer.solve();
    
    
    
    //////////////////////////////////////////////////
       
    
        //--- check Correctors (options):
        if(parameterSet.get<bool>("write_L2Error", false))
             correctorComputer.computeNorms();
        if(parameterSet.get<bool>("write_VTK", false))
             correctorComputer.writeCorrectorsVTK(level);
        //--- additional Test: check orthogonality (75) from paper:
        if(parameterSet.get<bool>("write_checkOrthogonality", false))
            correctorComputer.check_Orthogonality();
        //--- Check symmetry of stiffness matrix
        if(print_debug)
            correctorComputer.checkSymmetry();
    
     
        //--- compute effective quantities
        auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term,material_);
        effectiveQuantitiesComputer.computeEffectiveQuantities();
    
    
          }
     /*
    
        //--- Test:: Compute Qeff without using the orthogonality (75)... 
        // only really makes a difference whenever the orthogonality is not satisfied!
        // std::cout << "----------computeFullQ-----------"<< std::endl;  //TEST
        // effectiveQuantitiesComputer.computeFullQ();
    
        //--- get effective quantities
        auto Qeff = effectiveQuantitiesComputer.getQeff();
        auto Beff = effectiveQuantitiesComputer.getBeff();
        printmatrix(std::cout, Qeff, "Matrix Qeff", "--");
        printvector(std::cout, Beff, "Beff", "--");
    
        //--- write effective quantities to matlab folder (for symbolic minimization)
        if(parameterSet.get<bool>("write_toMATLAB", false))
            effectiveQuantitiesComputer.writeToMatlab(outputPath);
    
        std::cout.precision(10);
        std::cout<< "q1 : " << Qeff[0][0] << std::endl;
        std::cout<< "q2 : " << Qeff[1][1] << std::endl;
        std::cout<< "q3 : " << std::fixed << Qeff[2][2] << std::endl;
        std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl;
        // -------------------------------------------
    
    
        //TEST 
        // Func2Tensor x3G_1 = [] (const Domain& x) {
        //                         return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};    //TODO könnte hier sign übergeben?
        //                     };
    
        // double energy = effectiveQuantitiesComputer.energySP(x3G_1,x3G_1);
        // std::cout << "energy:" << energy << std::endl;
    
        Storage_Quantities.push_back(Qeff[0][0] );
        Storage_Quantities.push_back(Qeff[1][1] );
        Storage_Quantities.push_back(Qeff[2][2] );
        Storage_Quantities.push_back(Qeff[0][1] );
        Storage_Quantities.push_back(Qeff[1][2] );
        Storage_Quantities.push_back(Beff[0]);
        Storage_Quantities.push_back(Beff[1]);
        Storage_Quantities.push_back(Beff[2]);
    
        log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl;
        log << "q1="  << Qeff[0][0] << std::endl;
        log << "q2="  << Qeff[1][1] << std::endl;
        log << "q3="  << Qeff[2][2] << std::endl;
        log << "q12=" << Qeff[0][1] << std::endl;
        log << "q23=" << Qeff[1][2] << std::endl;
        log << std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl;
        log << "b1=" << Beff[0] << std::endl;
        log << "b2=" << Beff[1] << std::endl;
        log << "b3=" << Beff[2] << std::endl;
        log << "mu_gamma=" << Qeff[2][2] << std::endl;           // added for Python-Script
    
    
    
    
       if (write_materialFunctions)
       {
            using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >;
    //         VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80});
    //         VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40});
            VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements);
            
            using GridViewVTK = VTKGridType::LeafGridView;
            const GridViewVTK gridView_VTK = grid_VTK.leafGridView();
            
            auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>());
            auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>());
    
            std::vector<double> mu_CoeffP0;
            Functions::interpolate(scalarP0FeBasis, mu_CoeffP0, muTerm);
            auto mu_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, mu_CoeffP0);
            
            std::vector<double> mu_CoeffP1;
            Functions::interpolate(scalarP1FeBasis, mu_CoeffP1, muTerm);
            auto mu_DGBF_P1 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP1FeBasis, mu_CoeffP1);
            
            
            std::vector<double> lambda_CoeffP0;
            Functions::interpolate(scalarP0FeBasis, lambda_CoeffP0, lambdaTerm);
            auto lambda_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, lambda_CoeffP0);
            
            std::vector<double> lambda_CoeffP1;
            Functions::interpolate(scalarP1FeBasis, lambda_CoeffP1, lambdaTerm);
            auto lambda_DGBF_P1 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP1FeBasis, lambda_CoeffP1);
            
            VTKWriter<GridView> MaterialVtkWriter(gridView_VTK);
            
            MaterialVtkWriter.addVertexData(
                mu_DGBF_P1,
                VTK::FieldInfo("mu_P1", VTK::FieldInfo::Type::scalar, 1));    
            MaterialVtkWriter.addCellData(
                mu_DGBF_P0,
                VTK::FieldInfo("mu_P0", VTK::FieldInfo::Type::scalar, 1));    
            MaterialVtkWriter.addVertexData(
                lambda_DGBF_P1,
                VTK::FieldInfo("lambda_P1", VTK::FieldInfo::Type::scalar, 1));    
            MaterialVtkWriter.addCellData(
                lambda_DGBF_P0,
                VTK::FieldInfo("lambda_P0", VTK::FieldInfo::Type::scalar, 1));    
            
            MaterialVtkWriter.write(outputPath + "/MaterialFunctions-level"+ std::to_string(level) );
            std::cout << "wrote data to file:" + outputPath +"/MaterialFunctions-level" + std::to_string(level) << std::endl;  
            
       }
      
      
    //    if (write_prestrainFunctions)
    //    {
    //     using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >;
    // //     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80});
    // //     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40});
    //     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements);
    //     using GridViewVTK = VTKGridType::LeafGridView;
    //     const GridViewVTK gridView_VTK = grid_VTK.leafGridView();
       
    //     FTKfillerContainer<dim> VTKFiller;
    //     VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm");
        
    //     // WORKS Too 
    //     VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");;
        
        
    //     // TEST 
    //     auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>());
    //     auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>());
    
    //     std::vector<double> B_CoeffP0;
    //     Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term);
    //     auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0);
            
    
            
    //     VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK);
             
    //     PrestrainVtkWriter.addCellData(
    //             B_DGBF_P0,
    //             VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1));     
            
    //     PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) );
    //     std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; 
    
    //    }
      
      
    
    
      levelCounter++; 
      } // Level-Loop End
      
    
    
    
        //////////////////////////////////////////
        //--- Print Storage
        int tableWidth = 12;
        std::cout << center("Levels ",tableWidth)   << " | "
                  << center("q1",tableWidth)        << " | "
                  << center("q2",tableWidth)        << " | "
                  << center("q3",tableWidth)        << " | "
                  << center("q12",tableWidth)       << " | "
                  << center("q23",tableWidth)       << " | "
                  << center("b1",tableWidth)        << " | "
                  << center("b2",tableWidth)        << " | "
                  << center("b3",tableWidth)        << " | " << "\n";
        std::cout << std::string(tableWidth*9 + 3*9, '-')    << "\n";
        log       << std::string(tableWidth*9 + 3*9, '-')    << "\n";   
        log       << center("Levels ",tableWidth)   << " | "
                  << center("q1",tableWidth)        << " | "
                  << center("q2",tableWidth)        << " | "
                  << center("q3",tableWidth)        << " | "
                  << center("q12",tableWidth)       << " | "
                  << center("q23",tableWidth)       << " | "
                  << center("b1",tableWidth)        << " | "
                  << center("b2",tableWidth)        << " | "
                  << center("b3",tableWidth)        << " | " << "\n";
        log       << std::string(tableWidth*9 + 3*9, '-')    << "\n";   
      
        int StorageCount2 = 0;
        for(auto& v: Storage_Quantities) 
        {
            std::visit([tableWidth](auto&& arg){std::cout << center(prd(arg,5,1),tableWidth)      << " | ";}, v);
            std::visit([tableWidth, &log](auto&& arg){log << center(prd(arg,5,1),tableWidth)      << " & ";}, v);
            StorageCount2++;
            if(StorageCount2 % 9 == 0 )
            {
                std::cout << std::endl;
                log << std::endl;
            }
        }
        std::cout << std::string(tableWidth*9 + 3*9, '-') << "\n";
        log       << std::string(tableWidth*9 + 3*9, '-') << "\n";  
    
        log.close();
    
        std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl;
    
        */
    
    
    }