Skip to content
Snippets Groups Projects
Plot-Angle-Alpha_intermediateGamma.py 34.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    import numpy as np
    import matplotlib.pyplot as plt
    import sympy as sym
    import math
    import os
    import subprocess
    import fileinput
    import re
    import matlab.engine
    from HelperFunctions import *
    from ClassifyMin import *
    
    import matplotlib.ticker as tickers
    import matplotlib as mpl
    from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
    import pandas as pd
    
    # import tikzplotlib
    # # from pylab import *
    # from tikzplotlib import save as tikz_save
    
    
    # Needed ?
    mpl.use('pdf')
    
    # from subprocess import Popen, PIPE
    #import sys
    
    ###################### makePlot.py #########################
    #  Generalized Plot-Script giving the option to define
    #  quantity of interest and the parameter it depends on
    #  to create a plot
    #
    #  Input: Define y & x for "x-y plot" as Strings
    #  - Run the 'Cell-Problem' for the different Parameter-Points
    #  (alternatively run 'Compute_MuGamma' if quantity of interest
    #   is q3=muGamma for a significant Speedup)
    
    ###########################################################
    
    
    
    # figsize argument takes inputs in inches
    # and we have the width of our document in pts.
    # To set the figure size we construct a function
    # to convert from pts to inches and to determine
    # an aesthetic figure height using the golden ratio:
    # def set_size(width, fraction=1):
    #     """Set figure dimensions to avoid scaling in LaTeX.
    #
    #     Parameters
    #     ----------
    #     width: float
    #             Document textwidth or columnwidth in pts
    #     fraction: float, optional
    #             Fraction of the width which you wish the figure to occupy
    #
    #     Returns
    #     -------
    #     fig_dim: tuple
    #             Dimensions of figure in inches
    #     """
    #     # Width of figure (in pts)
    #     fig_width_pt = width * fraction
    #
    #     # Convert from pt to inches
    #     inches_per_pt = 1 / 72.27
    #
    #     # Golden ratio to set aesthetic figure height
    #     # https://disq.us/p/2940ij3
    #     golden_ratio = (5**.5 - 1) / 2
    #
    #     # Figure width in inches
    #     fig_width_in = fig_width_pt * inches_per_pt
    #     # Figure height in inches
    #     fig_height_in = fig_width_in * golden_ratio
    #
    #     fig_dim = (fig_width_in, fig_height_in)
    #
    #     return fig_dim
    #
    
    
    
    def format_func(value, tick_number):
        # # find number of multiples of pi/2
        # N = int(np.round(2 * value / np.pi))
        # if N == 0:
        #     return "0"
        # elif N == 1:
        #     return r"$\pi/2$"
        # elif N == 2:
        #     return r"$\pi$"
        # elif N % 2 > 0:
        #     return r"${0}\pi/2$".format(N)
        # else:
        #     return r"${0}\pi$".format(N // 2)
        # find number of multiples of pi/2
        N = int(np.round(4 * value / np.pi))
        if N == 0:
            return "0"
        elif N == 1:
            return r"$\pi/4$"
        elif N == 2:
            return r"$\pi/2$"
        elif N % 2 > 0:
            return r"${0}\pi/2$".format(N)
        else:
            return r"${0}\pi$".format(N // 2)
    
    
    
    
    
    def find_nearest(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return array[idx]
    
    
    def find_nearestIdx(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return idx
    
    
    
    # TODO
    # - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3
    # - Also Add option to plot Minimization Output
    
    
    # ----- Setup Paths -----
    # InputFile  = "/inputs/cellsolver.parset"
    # OutputFile = "/outputs/output.txt"
    
    InputFile  = "/inputs/computeMuGamma.parset"
    OutputFile = "/outputs/outputMuGamma.txt"
    
    # path = os.getcwd()
    # InputFilePath = os.getcwd()+InputFile
    # OutputFilePath = os.getcwd()+OutputFile
    # --------- Run  from src folder:
    path_parent = os.path.dirname(os.getcwd())
    os.chdir(path_parent)
    path = os.getcwd()
    print(path)
    InputFilePath = os.getcwd()+InputFile
    OutputFilePath = os.getcwd()+OutputFile
    print("InputFilepath: ", InputFilePath)
    print("OutputFilepath: ", OutputFilePath)
    print("Path: ", path)
    
    #---------------------------------------------------------------
    
    print('---- Input parameters: -----')
    mu1 = 1.0  #10.0
    # lambda1 = 10.0
    rho1 = 1.0
    # alpha = 5.0
    # beta = 10.0
    # alpha = 2.0
    # beta = 2.0
    # theta = 1.0/8.0  #1.0/4.0
    
    lambda1 = 0.0
    # gamma = 1.0/4.0
    
    # TEST:
    # alpha=3.0;
    
    
    
    
    # # INTERESTING!:
    # alpha = 3
    beta = 2.0
    # theta= 1/8
    
    
    
    
    #TEST
    # beta=2
    
    
    
    gamma = 'infinity'  #Elliptic Setting
    gamma = '0'       #Hyperbolic Setting
    # gamma = 0.01
    # # gamma= 3.0
    gamma = 0.5
    gamma = 0.75
    # # gamma = 100.0
    # gamma = 3.0
    
    Gamma_Values = [0.5, 0.75, 1.5, 3.0]
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # Gamma_Values = [ 1.5, 3.0]
    Gamma_Values = [3.0]
    
    Gamma_Values = ['infinity']
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    print('(Input) Gamma_Values:', Gamma_Values)
    # #
    for gamma in Gamma_Values:
    
        print('mu1: ', mu1)
        print('rho1: ', rho1)
        # print('alpha: ', alpha)
        print('beta: ', beta)
        # print('theta: ', theta)
        print('gamma:', gamma)
        print('----------------------------')
    
    
    
        # --- define Interval of x-va1ues:
        xmin = -2.0
        # xmax = 0.41
        xmax = 3.0
    
    
        xmin = -1.5
        xmax = 2.0
    
        xmin = -1.0
        xmax = -0.5
    
    
        Jumps = False
    
    
        numPoints = 2000
        numPoints = 300
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        numPoints = 30
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        X_Values = np.linspace(xmin, xmax, num=numPoints)
        print(X_Values)
    
    
        Y_Values = []
    
    
    
    
    
        Angle_Theta01 = []
        Angle_Theta025 = []
        Angle_Theta05 = []
    
        Angle_Theta075 = []
        Angle_Theta09 = []
    
    
    
    
    
    
        for alpha in X_Values:
            print('Situation of Lemma1.4')
            q12 = 0.0
            # q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
            # q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
            # b1 = prestrain_b1(rho1, beta, alpha,theta)
            # b2 = prestrain_b2(rho1, beta, alpha,theta)
            # b3 = 0.0
            # q3_Theta01 = GetMuGamma(beta,0.1,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
            # q3_Theta025 = GetMuGamma(beta,0.25,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
            q3_Theta05 = GetMuGamma(beta,0.5,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
            # q3_Theta075 = GetMuGamma(beta,0.75,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
            # q3_Theta09 = GetMuGamma(beta,0.9,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
    
    
            # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.1, q3_Theta01,  mu1, rho1)
            # Angle_Theta01.append(angle)
            #
            # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.25, q3_Theta025,  mu1, rho1)
            # Angle_Theta025.append(angle)
    
            G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.5,  q3_Theta05,  mu1, rho1)
            Angle_Theta05.append(angle)
    
            # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.75, q3_Theta075,  mu1, rho1)
            # Angle_Theta075.append(angle)
            #
            # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.9, q3_Theta09,  mu1, rho1)
            # Angle_Theta09.append(angle)
    
    
    
    
            #
            # G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3,  mu1, rho1)
            # Angle_alphaNeg05 .append(angle)
            # G, angle, Type, curvature = classifyMin_ana(-0.25,beta,theta, q3,  mu1, rho1)
            # Angle_alphaNeg025.append(angle)
            # G, angle, Type, curvature = classifyMin_ana(3.0,beta,theta, q3,  mu1, rho1)
            # Angle_alpha3.append(angle)
            # G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3,  mu1, rho1)
            # Angle_alphaNeg075.append(angle)
            # G, angle, Type, curvature = classifyMin_ana(0,beta,theta, q3,  mu1, rho1)
            # Angle_alpha0.append(angle)
            # # G, angle, Type, curvature = classifyMin_ana(-0.125,beta,theta, q3,  mu1, rho1)
            # # Angle_alphaNeg0125.append(angle)
            # G, angle, Type, curvature = classifyMin_ana(-0.7,beta,theta, q3,  mu1, rho1)
            # Angle_alphaNeg0125.append(angle)
            #
            # G, angle, Type, curvature = classifyMin_ana(-0.625,beta,theta, q3,  mu1, rho1)
            # Angle_alphaNeg0625.append(angle)
            # G, angle, Type, curvature = classifyMin_ana(-0.875,beta,theta, q3,  mu1, rho1)
            # Angle_alphaNeg0875.append(angle)
    
        #
        #
        # print("(Output) Values of angle: ", Y_Values)
        #
        #
        # idx = find_nearestIdx(Y_Values, 0)
        # print(' Idx of value  closest to 0', idx)
        # ValueClose = Y_Values[idx]
        # print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose)
        #
        #
        #
        # # Find Indices where the difference between the next one is larger than epsilon...
        # jump_idx = []
        # jump_xValues = []
        # jump_yValues = []
        # tmp = X_Values[0]
        # for idx, x in enumerate(X_Values):
        #     print(idx, x)
        #     if idx > 0:
        #         if abs(Y_Values[idx]-Y_Values[idx-1]) > 1:
        #             print('jump candidate')
        #             jump_idx.append(idx)
        #             jump_xValues.append(x)
        #             jump_yValues.append(Y_Values[idx])
        #
        #
        #
        #
        #
        #
        #
        # print("Jump Indices", jump_idx)
        # print("Jump X-values:", jump_xValues)
        # print("Jump Y-values:", jump_yValues)
        #
        # y_plotValues = [Y_Values[0]]
        # x_plotValues = [X_Values[0]]
        # # y_plotValues.extend(jump_yValues)
        # for i in jump_idx:
        #     y_plotValues.extend([Y_Values[i-1], Y_Values[i]])
        #     x_plotValues.extend([X_Values[i-1], X_Values[i]])
        #
        #
        # y_plotValues.append(Y_Values[-1])
        # # x_plotValues = [X_Values[0]]
        # # x_plotValues.extend(jump_xValues)
        # x_plotValues.append(X_Values[-1])
        #
        #
        # print("y_plotValues:", y_plotValues)
        # print("x_plotValues:", x_plotValues)
    
    
        # Y_Values[np.diff(y) >= 0.5] = np.nan
    
    
        #get values bigger than jump position
        # gamma = infty
        # x_rest = X_Values[X_Values>x_plotValues[1]]
        # Y_Values = np.array(Y_Values)  #convert the np array
        # y_rest = Y_Values[X_Values>x_plotValues[1]]
        #
        #
        # # gamma = 0
        # x_rest = X_Values[X_Values>x_plotValues[3]]
        # Y_Values = np.array(Y_Values)  #convert the np array
        # y_rest = Y_Values[X_Values>x_plotValues[3]]
    
        # gamma between
        # Y_Values = np.array(Y_Values)  #convert the np array
        # X_Values = np.array(X_Values)  #convert the np array
        #
        # x_one = X_Values[X_Values>x_plotValues[3]]
        # # ax.scatter(X_Values, Y_Values)
        # y_rest = Y_Values[X_Values>x_plotValues[3]]
        # ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135])
        #
        #
        #
    
    
        # y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]]
        # print('X_Values:', X_Values)
        # print('Y_Values:', Y_Values)
        # print('x_rest:', x_rest)
        # print('y_rest:', y_rest)
        # print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
    
    
    
    
        # --- Convert to numpy array
        Y_Values = np.array(Y_Values)
        X_Values = np.array(X_Values)
    
        Angle_Theta01 = np.array(Angle_Theta01)
        Angle_Theta025 = np.array(Angle_Theta025)
    
        Angle_Theta05 = np.array(Angle_Theta05)
    
        Angle_Theta075 = np.array(Angle_Theta075)
        Angle_Theta09 = np.array(Angle_Theta09)
        # ---------------- Create Plot -------------------
    
        #--- change plot style:  SEABORN
        # plt.style.use("seaborn-paper")
    
    
        #--- Adjust gobal matplotlib variables
        # mpl.rcParams['pdf.fonttype'] = 42
        # mpl.rcParams['ps.fonttype'] = 42
        mpl.rcParams['text.usetex'] = True
        mpl.rcParams["font.family"] = "serif"
        mpl.rcParams["font.size"] = "9"
    
    
        # plt.rc('font', family='serif', serif='Times')
        # plt.rc('font', family='serif')
        # # plt.rc('text', usetex=True)  #also works...
        # plt.rc('xtick', labelsize=8)
        # plt.rc('ytick', labelsize=8)
        # plt.rc('axes', labelsize=8)
    
    
    
    
    
        #---- Scale Figure apropriately to fit tex-File Width
        # width = 452.9679
    
        # width as measured in inkscape
        width = 6.28 *0.5
        width = 6.28 *0.333
        # width = 6.28
        height = width / 1.618
    
        #setup canvas first
        fig = plt.figure()      #main
        # fig, ax = plt.subplots()
        # fig, (ax, ax2) = plt.subplots(ncols=2)
        # fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot
    
    
        # fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97)  #TEST
    
    
        # TEST
        # mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1)
        # fig = plt.figure(figsize=(width+0.1,height+0.1))
    
    
        # mpl.rcParams['figure.figsize'] = (width,height)
        # fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
        # fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
        # fig = plt.figure(figsize=set_size(width))
        # fig = plt.subplots(1, 1, figsize=set_size(width))
    
        # --- To create a figure half the width of your document:#
        # fig = plt.figure(figsize=set_size(width, fraction=0.5))
    
    
    
        #--- You must select the correct size of the plot in advance
        # fig.set_size_inches(3.54,3.54)
    
        # ax = plt.axes((0.15,0.18,0.8,0.8))
        # ax = plt.axes((0.15,0.18,0.6,0.6))
        # ax = plt.axes((0.15,0.2,0.75,0.75))
        # ax = plt.axes((0.18,0.2,0.75,0.75))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
        # ax = plt.axes((0.28,0.3,0.65,0.65))  # This one!
    
        ax = plt.axes((0.25,0.25,0.6,0.6))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # ax = plt.axes((0.1,0.1,0.5,0.8))
        # ax = plt.axes((0.1,0.1,1,1))
        # ax = plt.axes()
    
        # ax.spines['right'].set_visible(False)
        # ax.spines['left'].set_visible(False)
        # ax.spines['bottom'].set_visible(False)
        # ax.spines['top'].set_visible(False)
        # ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green',
        #                labelrotation=15)
        # ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10)
        # ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10)
        ax.tick_params(axis='x',which='major', direction='out',pad=3)
        ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
    
    
    
        if gamma == '0':
            Title = r'$0< \gamma \ll 1$'
            ax.set_title(Title)
    
        elif gamma == 'infinity':
            print('THIS CASE')
            Title = r'$\gamma \gg 1$'
            ax.set_title(Title)
    
        else:
            Title = r'$ \gamma =$' + str(gamma)
            ax.set_title(Title)
    
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # ax.xaxis.set_major_locator(MultipleLocator(0.05))
        # ax.xaxis.set_minor_locator(MultipleLocator(0.025))
        # ax.xaxis.set_major_locator(MultipleLocator(0.1))
        # ax.xaxis.set_minor_locator(MultipleLocator(0.05))
        ax.xaxis.set_major_locator(MultipleLocator(0.25))
        ax.xaxis.set_minor_locator(MultipleLocator(0.125))
        # ax.xaxis.set_major_locator(MultipleLocator(0.5))
        # ax.xaxis.set_minor_locator(MultipleLocator(0.25))
        #---- print data-types
        print(ax.xaxis.get_major_locator())
        print(ax.xaxis.get_minor_locator())
        print(ax.xaxis.get_major_formatter())
        print(ax.xaxis.get_minor_formatter())
    
        #---- Hide Ticks or Labels
        # ax.yaxis.set_major_locator(plt.NullLocator())
        # ax.xaxis.set_major_formatter(plt.NullFormatter())
    
        #---- Reducing or Increasing the Number of Ticks
        # ax.xaxis.set_major_locator(plt.MaxNLocator(3))
        # ax.yaxis.set_major_locator(plt.MaxNLocator(3))
    
    
        #----- Fancy Tick Formats
        ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4))
        ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
        ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
    
    
    
    
    
    
    
        # --- manually change ticks&labels:
        # ax.set_xticks([0.2,1])
        # ax.set_xticklabels(['pos1','pos2'])
    
        # ax.set_yticks([0, np.pi/8, np.pi/4 ])
        # labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
        # ax.set_yticklabels(labels)
    
        a=ax.yaxis.get_major_locator()
        b=ax.yaxis.get_major_formatter()
        c = ax.get_xticks()
        d = ax.get_xticklabels()
        print('xticks:',c)
        print('xticklabels:',d)
    
        ax.grid(True,which='major',axis='both',alpha=0.3)
    
    
    
    
    
    
        # plt.figure()
    
        # f,ax=plt.subplots(1)
    
        # plt.title(r''+ yName + '-Plot')
        # plt.plot(X_Values, Y_Values,linewidth=2, '.k')
        # plt.plot(X_Values, Y_Values,'.k',markersize=1)
        # plt.plot(X_Values, Y_Values,'.',markersize=0.8)
    
        # plt.plot(X_Values, Y_Values)
    
        # ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
    
    
    
        # Gamma = '0'
        # ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b')
        #
        # ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b')
        #
        # ax.plot(x_rest, y_rest, 'b')
    
    
        # Gamma between
    
        # x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093]
    
        # ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b')
        # ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b')
    
        # ax.plot([[0,0.13606060606060608], [0, 0]] , 'b')
        # ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b')
    
        # jump_xValues[0]
    
    
    
        # --- leave out jumps:
        # ax.scatter(X_Values, Y_Values)
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # ax.set_xlabel(r"prestrain ratio $\theta_\rho$",labelpad=0)
        ax.set_xlabel(r"$\theta_\rho$",labelpad=0)
        ax.set_ylabel(r"$\alpha$")
        # ax.set_ylabel(r"angle $\alpha$")
    
    
        # ax.set_title(r"$\gamma = \ $"+str(gamma), fontsize=10)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
        if Jumps:
    
            # --- leave out jumps:
            if gamma == 'infinity':
                ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue')
                ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
    
    
    
                # ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]])
                # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]])
    
    
    
    
            # ax.plot(X_Values[X_Values>0.136], Y_Values[X_Values>0.136])
            # ax.plot(X_Values[X_Values<0.135], Y_Values[X_Values<0.135])
            # ax.scatter(X_Values, Y_Values)
            # ax.plot(X_Values, Y_Values)
    
            # plt.plot(x_plotValues, y_plotValues,'.')
            # plt.scatter(X_Values, Y_Values, alpha=0.3)
            # plt.scatter(X_Values, Y_Values)
            # plt.plot(X_Values, Y_Values,'.')
            # plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
            # plt.axis([0, 6, 0, 20])
    
            # ax.set_xlabel(r"volume fraction $\theta$", size=11)
            # ax.set_ylabel(r"angle $\angle$",  size=11)
            # ax.set_xlabel(r"volume fraction $\theta$")
            # # ax.set_ylabel(r"angle $\angle$")
            # ax.set_ylabel(r"angle $\alpha$")
            # plt.ylabel('$\kappa$')
    
            # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
            # ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1))
    
    
    
    
            # Plot every other line.. not the jumps...
    
            if gamma == '0':
                tmp = 1
                for idx, x in enumerate(x_plotValues):
                    if idx > 0 and tmp == 1:
                        # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] )
                        ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue', zorder=2)
                        tmp = 0
                    else:
                        tmp = 1
    
            # plt.plot([x_plotValues[0],x_plotValues[1]] ,[y_plotValues[0],y_plotValues[1]] )
            # plt.plot([x_plotValues[2],x_plotValues[3]] ,[y_plotValues[2],y_plotValues[3]] )
            # plt.plot([x_plotValues[4],x_plotValues[5]] ,[y_plotValues[4],y_plotValues[5]] )
            # plt.plot([x_plotValues[6],x_plotValues[7]] ,[y_plotValues[6],y_plotValues[7]] )
    
    
            for x in jump_xValues:
                plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1, zorder=1)
                # plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed',  label=r'$\theta_*$')
    
            # plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
    
            # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
            # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
            # plt.legend()
    
    
            # -- SETUP LEGEND
            # ax.legend(prop={'size': 11})
            # ax.legend()
    
            # ------------------ SAVE FIGURE
            # tikzplotlib.save("TesTout.tex")
            # plt.close()
            # mpl.rcParams.update(mpl.rcParamsDefault)
    
            # plt.savefig("graph.pdf",
            #             #This is simple recomendation for publication plots
            #             dpi=1000,
            #             # Plot will be occupy a maximum of available space
            #             bbox_inches='tight',
            #             )
            # plt.savefig("graph.pdf")
    
    
    
            # ---- ADD additional scatter:
            # ax.scatter(X_Values,Y_Values,s=1,c='black',zorder=4)
    
            # Find transition point
            lastIdx = len(Y_Values)-1
    
            for idx, y in enumerate(Y_Values):
                if idx != lastIdx:
                    if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05:
                        transition_point1 = X_Values[idx+1]
                        print('transition point1:', transition_point1 )
                    if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01:
                        transition_point2 = X_Values[idx]
                        print('transition point2:', transition_point2 )
                    if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01:
                        transition_point3 = X_Values[idx+1]
                        print('transition point3:', transition_point3 )
    
            # Add transition Points:
            if gamma == '0':
                ax.scatter([transition_point1, transition_point2],[np.pi/2,np.pi/2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
                                          edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
    
                ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                                   )
    
                ax.text(transition_point2+0.012 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                                   )
            else:
                ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
                                          edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
    
                ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                                   )
    
                ax.text(transition_point2 +0.011 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                                   )
    
                ax.text(transition_point3 +0.009 , 0+0.08, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                                       )
    
        else:
                # ax.scatter(X_Values,Y_Values,s=1, marker='o', cmap=None, norm=None, facecolor = 'blue',
                #                           edgecolor = 'none', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                 # ---------------------------------------------------------------
                # l1 = ax.scatter(X_Values,Angle_alpha0,s=1, marker='o', edgecolor = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=0.75, linewidths=None, zorder=4)
                # l6 = ax.scatter(X_Values,Angle_alphaNeg1,s=2, marker='s', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=1, label=r"$\theta_\rho = -1.0$")
                # l4 = ax.scatter(X_Values,Angle_alphaNeg05,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l3 = ax.scatter(X_Values,Angle_alphaNeg025,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l7 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', facecolor = 'none',edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=5)
                # # l4 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3)
                # l5 = ax.scatter(X_Values,Angle_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l2 = ax.scatter(X_Values,Angle_alphaNeg0125,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                #
                # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = 3.0$"]
                # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8  ])
                # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$']
                # ax.set_yticklabels(labels)
                #
                # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7],
                #           labels= [ r"$\theta_\rho = 0$", r"$\theta_\rho = -0.125$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.75$",  r"$\theta_\rho = -1.0$",  r"$\theta_\rho = 3.0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
               # ---------------------------------------------------------------
                # l1 = ax.scatter(X_Values,Angle_alphaNeg1,s=2, marker='s', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=1)
                # l2 = ax.scatter(X_Values,Angle_alphaNeg0875,s=2, marker='o',cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
                # l3 = ax.scatter(X_Values,Angle_alphaNeg075,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l4 = ax.scatter(X_Values,Angle_alphaNeg0625,s=2, marker='o',cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
                # l5 = ax.scatter(X_Values,Angle_alphaNeg05,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l6 = ax.scatter(X_Values,Angle_alphaNeg025,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l7 = ax.scatter(X_Values,Angle_alphaNeg0125,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
                # l8 = ax.scatter(X_Values,Angle_alpha0,s=2, marker='s', edgecolor = 'black', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
                # l1 = ax.plot(X_Values,Angle_alphaNeg05, color='blue', linewidth=1.5, zorder=3, label=r"$\theta_\rho=-0.5$")
                # l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$")
                # l3 = ax.plot(X_Values,Angle_alphaNeg06,color='orangered', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.6$")
                # l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$")
                # l5 = ax.plot(X_Values,Angle_alphaNeg07,color='orange', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.7$")
                # l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$")
                # l7 = ax.plot(X_Values,Angle_alphaNeg08, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.8$")
                # l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.85$")
                # l9 = ax.plot(X_Values,Angle_alphaNeg09, color='teal',linestyle = '--', linewidth=1.5 ,  zorder=3, label=r"$\theta_\rho=-0.9$")
                # l10 = ax.plot(X_Values,Angle_alphaNeg095, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.95$")
                # l11 = ax.plot(X_Values,Angle_alphaNeg1, color='red', linewidth=1.5 ,zorder=1, label=r"$\theta_\rho=-1.0$")
    
    
                # l1 = ax.plot(X_Values,Angle_Theta01, color='blue', linewidth=1.5, zorder=3, label=r"$\theta=0.1$")
                # # l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$")
                # l3 = ax.plot(X_Values,Angle_Theta025,color='orangered', linewidth=1.5  ,zorder=3, label=r"$\theta = 0.25$")
                # # l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$")
                # l5 = ax.plot(X_Values,Angle_Theta05,color='orange', linewidth=1.5  ,zorder=3, label=r"$\theta = 0.5$")
                # # l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$")
                # l7 = ax.plot(X_Values,Angle_Theta075, linewidth=1.5 ,  zorder=3, label=r"$\theta = 0.75$")
                # # l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.85$")
                # l9 = ax.plot(X_Values,Angle_Theta09, color='teal', linewidth=1.5 ,  zorder=3, label=r"$\theta =0.9$")
                # # l10 = ax.plot(X_Values,Angle_alphaNeg095, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.95$")
    
    
                # l1 = ax.scatter(X_Values,Angle_Theta01, color='blue', s=2, zorder=3, label=r"$\theta=0.1$")
                # l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$")
                # l3 = ax.scatter(X_Values,Angle_Theta025,color='orangered', s=2  ,zorder=3, label=r"$\theta = 0.25$")
                # l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$")
                l5 = ax.scatter(X_Values,Angle_Theta05, color='royalblue', s=0.15 ,zorder=3, label=r"$\theta = 0.5$")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                # l5 = ax.scatter(X_Values,Angle_Theta05, color='royalblue' ,zorder=3, label=r"$\theta = 0.5$")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                # l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$")
                # l7 = ax.scatter(X_Values,Angle_Theta075, s=2, zorder=3, label=r"$\theta = 0.75$")
                # l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.85$")
                # l9 = ax.scatter(X_Values,Angle_Theta09, color='teal',s=2,  zorder=3, alpha=1.0, label=r"$\theta =0.9$")
    
                # ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0], l9[0], l10[0], l11[0]],
                #           # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
    
                # ax.legend(handles=[l1[0],l3[0], l5[0], l7[0], l9[0]] ,
                #           # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
    
                # ax.legend(handles=[l1,l3, l5, l7, l9] ,
                #           # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
    
                # ax.legend(handles=[l5] ,
                #           # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
    
        # ax.plot(X_Values, Y_Values,   marker='o',  markerfacecolor='orange', markeredgecolor='black', markeredgewidth=1,  linewidth=1, zorder=3)
                # l7 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', facecolor = 'none',edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=5)
                # l4 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3)
                # l5 = ax.scatter(X_Values,Angle_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
    
    
                # line_labels = [r"$\theta_\rho = -1.0$",r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -  \frac{3}{4}$", r"$\theta_\rho = -  \frac{5}{8}$",r"$\theta_\rho = - 0.5 $" ,r"$\theta_\rho = -  0.25", r"$\theta_\rho = -  \frac{1}{8}" , r"$\theta_\rho = 0$"]
                ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8  ])
                labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$']
                ax.set_yticklabels(labels)
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7, l8],
                #           labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
    
                #
                # ax.legend(handles=[l1,l3, l5, l7, l8],
                #           labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                #           loc='upper left',
                #           bbox_to_anchor=(1,1))
                #
    
    
    
    
    
                # fig.legend([l1, l2, l3, l4],     # The line objects
                #            labels=line_labels,   # The labels for each line
                #            # loc="upper center",   # Position of legend
                #            loc='upperleft', bbox_to_anchor=(1,1),
                #            borderaxespad=0.15    # Small spacing around legend box
                #            # title="Legend Title"  # Title for the legend
                #            )
    
        pdf_outputName = 'Plot-Angle-Alpha_Gamma'+ str(gamma)+ '_transition'+'.pdf'
    
        fig.set_size_inches(width, height)
        # fig.savefig('Plot-Angle-Theta.pdf')
        fig.savefig(pdf_outputName)
    
    
    
    
        # tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm')
    
        # tikz_save('fig.tikz',
        #            figureheight = '\\figureheight',
        #            figurewidth = '\\figurewidth')
    
        # ----------------------------------------
    
    
    # plt.show()
    # #---------------------------------------------------------------