Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import math
import os
import subprocess
import fileinput
import re
import matlab.engine
import sys
from ClassifyMin import *
from HelperFunctions import *
# from CellScript import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
from vtk.util import numpy_support
from pyevtk.hl import gridToVTK
import time
import matplotlib.ticker as ticker
import matplotlib as mpl
from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
import pandas as pd
# from matplotlib import rc
# rc('text', usetex=True) # Use LaTeX font
#
# import seaborn as sns
# sns.set(color_codes=True)
def format_func(value, tick_number):
# # find number of multiples of pi/2
# N = int(np.round(2 * value / np.pi))
# if N == 0:
# return "0"
# elif N == 1:
# return r"$\pi/2$"
# elif N == 2:
# return r"$\pi$"
# elif N % 2 > 0:
# return r"${0}\pi/2$".format(N)
# else:
# return r"${0}\pi$".format(N // 2)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
elif N % 2 > 0:
return r"${0}\pi/2$".format(N)
else:
return r"${0}\pi$".format(N // 2)
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def find_nearestIdx(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
InputFile = "/inputs/computeMuGamma.parset"
OutputFile = "/outputs/outputMuGamma.txt"
# --------- Run from src folder:
path_parent = os.path.dirname(os.getcwd())
os.chdir(path_parent)
path = os.getcwd()
print(path)
InputFilePath = os.getcwd()+InputFile
OutputFilePath = os.getcwd()+OutputFile
print("InputFilepath: ", InputFilePath)
print("OutputFilepath: ", OutputFilePath)
print("Path: ", path)
print('---- Input parameters: -----')
# mu1 = 10.0
# rho1 = 1.0
# alpha = 2.56140350877193 #2.56140350877193, 4.0852130325814535
# beta = 2.0 #5.0
# theta = 1.0/4.0
# theta = 1.0/8.0 # 0.5
# theta = 0.075 # 0.5
# mu1 = 10.0
# rho1 = 1.0
alpha = 10.0
# beta = 40.0
# theta = 0.125
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
rho1 = 1.0
# alpha = 2.0
beta = 2.0 #5.0
# theta = 1.0/4.0
theta = 1.0/8.0
#
# mu1 = 10.0
# rho1 = 1.0
# alpha = 10.0
# beta = 2.0 #5.0
# theta = 1.0/8.0
# #
# mu1 = 10.0
# rho1 = 1.0
# # alpha = 10.02021333
# alpha = 10.0
# beta = 2.0
# theta = 0.125
# mu1 = 10.0
# rho1 = 1.0
# # alpha = 10.02021333
# alpha = 9.0
# beta = 2.0
# theta = 0.075
#
# mu1 = 10.0
# rho1 = 1.0
# alpha = 4.0
# beta = 10.0
# theta = 1.0/4.0
# alpha = 10 #1.05263158
# beta = 40.0 #5.0
# # theta = 1.0/4.0
# theta = 1.0/8.0 # 0.5
#
#
# alpha = 2.0
# beta = 2.0 #5.0
# theta = 1/4.0
# rho1 = 1.0
# mu1 = 10.0
# InterestingParameterSet :
# mu1 = 10.0
# rho1 = 1.0
# alpha = 10
# beta = 40.0
# theta = 0.124242
# gamma = 0.75
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
# gamma = '0'
# gamma = 'infinity'
# gamma = 0.5
# gamma = 0.25
print('mu1: ', mu1)
print('rho1: ', rho1)
print('alpha: ', alpha)
print('beta: ', beta)
print('theta: ', theta)
# print('gamma:', gamma)
print('----------------------------')
# ----------------------------------------------------------------
gamma_min = 0.01
gamma_max = 1.0
Gamma_Values = np.linspace(gamma_min, gamma_max, num=20) # TODO variable Input Parameters...alpha,beta...
print('(Input) Gamma_Values:', Gamma_Values)
# mu_gamma = []
# Gamma_Values = '0'
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Get values for mu_Gamma
GetMuGammaVec = np.vectorize(GetMuGamma)
muGammas = GetMuGammaVec(beta,theta,Gamma_Values,mu1,rho1, InputFilePath ,OutputFilePath )
print('muGammas:', muGammas)
q12 = 0.0
q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
print('q1: ', q1)
print('q2: ', q2)
b1 = prestrain_b1(rho1, beta, alpha,theta)
b2 = prestrain_b2(rho1, beta, alpha,theta)
q3_star = math.sqrt(q1*q2)
print('q3_star:', q3_star)
# TODO these have to be compatible with input parameters!!!
# compute certain ParameterValues that this makes sense
# b1 = q3_star
# b2 = q1
print('b1: ', b1)
print('b2: ', b2)
# return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output)
# classifyMin_anaVec = np.vectorize(classifyMin_ana)
# G, angles, Types, curvature = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
classifyMin_anaVec = np.vectorize(classifyMin_ana)
G, angles, Types, curvature = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
# _,angles,_,_ = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
print('angles:', angles)
idx = find_nearestIdx(muGammas, q3_star)
print('GammaValue Idx closest to q_3^*', idx)
gammaClose = Gamma_Values[idx]
print('GammaValue(Idx) with mu_gamma closest to q_3^*', gammaClose)
determinantVec = np.vectorize(determinant)
detValues = determinantVec(q1,q2,muGammas,q12)
print('detValues:', detValues)
detZeroidx = find_nearestIdx(detValues, 0)
print('idx where det nearest to zero', idx)
gammaClose = Gamma_Values[detZeroidx]
print('gammaClose:', gammaClose)
# --- Convert to numpy array
Gamma_Values = np.array(Gamma_Values)
angles = np.array(angles)
# ---------------- Create Plot -------------------
# plt.figure()
mpl.rcParams['text.usetex'] = True
mpl.rcParams["font.family"] = "serif"
mpl.rcParams["font.size"] = "9"
width = 6.28 *0.5
height = width / 1.618
fig = plt.figure()
# ax = plt.axes((0.15,0.21 ,0.75,0.75))
ax = plt.axes((0.15,0.21 ,0.8,0.75))
ax.tick_params(axis='x',which='major', direction='out',pad=5)
ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
ax.xaxis.set_major_locator(MultipleLocator(0.1))
ax.xaxis.set_minor_locator(MultipleLocator(0.05))
ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
ax.grid(True,which='major',axis='both',alpha=0.3)
# # plt.title(r'angle$-\mu_\gamma(\gamma)$-Plot')
# # plt.title(r'angle$-\gamma$-Plot')
# plt.plot(Gamma_Values, angles)
# plt.scatter(Gamma_Values, angles)
# plt.plot(muGammas, angles)
# plt.scatter(muGammas, angles)
# # plt.axis([0, 6, 0, 20])
# # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.axvline(x = q1, color = 'b', linestyle = ':', label='$q_1$')
# plt.axvline(x = q2, color = 'r', linestyle = 'dashed', label='$q_2$')
# # plt.axvline(x = q3_star, color = 'r', linestyle = 'dashed', label='$\gamma^*$')
# ax.plot(muGammas, angles)
# ax.scatter(muGammas, angles)
ax.plot(Gamma_Values, angles, 'royalblue', zorder=3, )
# ax.scatter(Gamma_Values, angles)
# ax.set_xlabel(r"$q_3(\gamma)$")
ax.set_xlabel(r"$\gamma$")
# ax.set_ylabel(r"angle $\angle$")
ax.set_ylabel(r"angle $\alpha$")
# plt.xlabel("$q_3$")
# plt.xlabel("$\gamma$")
# plt.ylabel("angle")
# ax.grid(True)
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
# ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4))
# ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
# ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.25))
# ax.yaxis.set_major_formatter(ticker.FuncFormatter(
# lambda val,pos: '{:.0g}$\pi$'.format(2*val/np.pi) if val !=0 else '0'))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.5*np.pi))
# ---------------------------- show pi values ------------------------------------
# ax.axvline(x = q1, color = 'b', linestyle = ':', label='$q_1$')
# ax.axvline(x = q2, color = 'r', linestyle = 'dashed', label='$q_2$')
# ax.legend()
# # ax.set(xlim=(1.750, 1.880), ylim=(0, math.pi/2.0))
# ax.set(xlim=(1.760, 1.880), ylim=(-0.1, np.pi/4.0))
# # ax.set_yticks([0, np.pi/4 ,np.pi/2])
# # labels = ['$0$', r'$\pi/4$', r'$\pi/2$']
# ax.set_yticks([0, np.pi/8, np.pi/4 ])
# labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
# ax.set_yticklabels(labels)
# ---------------------------------------------------------------
# ax.set(xlim=(1.750, 1.880), ylim=(0, math.pi/2.0))
# ax.set(xlim=(1.760, 1.880), ylim=(-0.1, np.pi/4.0))
# ax.set(xlim=(1.760, 1.880), ylim=(-0.1, np.pi/4.0))
# ax.set_yticks([0, np.pi/4 ,np.pi/2])
# labels = ['$0$', r'$\pi/4$', r'$\pi/2$']
# OLD :
ax.set_yticks([0, np.pi/8, np.pi/4 ])
labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
ax.set_yticklabels(labels)
# Plot Gamma Value that is closest to q3_star
ax.axvline(x = gammaClose, color = 'midnightblue', linestyle = 'dashed', label='$\gamma^*$')
# color elliptic/hyperbolic region
# ax.axvspan(gamma_min, gammaClose, color='red', alpha=0.2)
# ax.axvspan(gammaClose, gamma_max, color='green', alpha=0.2)
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
ax.legend(loc='upper right')
# plt.xlabel("$q_3(\gamma)$")
# plt.xlabel("$\gamma$")
# plt.ylabel("angle")
# plt.legend(loc='upper center')
fig.set_size_inches(width, height)
fig.savefig('Plot-Angle-Gamma.pdf')
plt.show()
# plt.figure()
# plt.title(r'angle$-\mu_\gamma(\gamma)$-Plot')
# plt.plot(muGammas, angles)
# plt.scatter(muGammas, angles)
# # plt.axis([0, 6, 0, 20])
# # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.axvline(x = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axvline(x = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.xlabel("$\mu_\gamma$")
# plt.ylabel("angle")
# plt.legend()
# plt.show()
#