Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import math
import os
import subprocess
import fileinput
import re
import matlab.engine
from HelperFunctions import *
from ClassifyMin import *
import matplotlib.ticker as ticker
# from subprocess import Popen, PIPE
#import sys
import matplotlib.ticker as tickers
import matplotlib as mpl
from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
import pandas as pd
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
###################### makePlot.py #########################
# Generalized Plot-Script giving the option to define
# quantity of interest and the parameter it depends on
# to create a plot
#
# Input: Define y & x for "x-y plot" as Strings
# - Run the 'Cell-Problem' for the different Parameter-Points
# (alternatively run 'Compute_MuGamma' if quantity of interest
# is q3=muGamma for a significant Speedup)
###########################################################
def format_func(value, tick_number):
# find number of multiples of pi/2
N = int(np.round(2 * value / np.pi))
if N == 0:
return "0"
elif N == 1:
return r"$\pi/2$"
elif N == 2:
return r"$\pi$"
elif N % 2 > 0:
return r"${0}\pi/2$".format(N)
else:
return r"${0}\pi$".format(N // 2)
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def find_nearestIdx(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
# TODO
# - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3
# - Also Add option to plot Minimization Output
# ----- Setup Paths -----
InputFile = "/inputs/cellsolver.parset"
OutputFile = "/outputs/output.txt"
# path = os.getcwd()
# InputFilePath = os.getcwd()+InputFile
# OutputFilePath = os.getcwd()+OutputFile
# --------- Run from src folder:
path_parent = os.path.dirname(os.getcwd())
os.chdir(path_parent)
path = os.getcwd()
print(path)
InputFilePath = os.getcwd()+InputFile
OutputFilePath = os.getcwd()+OutputFile
print("InputFilepath: ", InputFilePath)
print("OutputFilepath: ", OutputFilePath)
print("Path: ", path)
#---------------------------------------------------------------
print('---- Input parameters: -----')
# mu1 = 10.0
# # lambda1 = 10.0
rho1 = 1.0
# alpha = 5.0
# beta = 10.0
# theta = 1.0/4.0
mu1 = 10.0
# lambda1 = 10.0
# rho1 = 10.0
alpha = 5.0
# beta = 2.0
beta = 10.0
theta = 1.0/4.0
theta = 1.0/2.0
# theta = 1.0/12.0
print('mu1: ', mu1)
print('rho1: ', rho1)
print('alpha: ', alpha)
print('beta: ', beta)
print('theta: ', theta)
print('gamma:', gamma)
print('----------------------------')
# Optional - TODO? :
# -Ask User for Input ...
# function = input("Enter value you want to plot (y-value):\n")
# print(f'You entered {function}')
# parameter = input("Enter Parameter this value depends on (x-value) :\n")
# print(f'You entered {parameter}')
# -Add Option to change NumberOfElements used for computation of Cell-Problem
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# --- Define Quantity of interest:
# Options: 'q1', 'q2', 'q3', 'q12' ,'q21', 'q31', 'q13' , 'q23', 'q32' , 'b1', 'b2' ,'b3'
# TODO: EXTRA (MInimization Output) 'Minimizer (norm?)' 'angle', 'type', 'curvature'
# yName = 'q12'
# # yName = 'b1'
# yName = 'q3'
yName = 'angle'
yName = 'curvature'
# --- Define Parameter this function/quantity depends on:
# Options: mu1 ,lambda1, rho1 , alpha, beta, theta, gamma
# xName = 'theta'
# xName = 'gamma'
# xName = 'lambda1'
xName = 'theta'
# xName = 'alpha'
# --- define Interval of x-values:
xmin = 0
xmax = 30
# xmin = 0.245
# xmax = 0.99
#
#
# xmin = 0.14
# xmax = 0.19
# xmin = 0.01
# xmax = 3.0
xmin = 0.01
xmax = 0.4
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
X_Values = np.linspace(xmin, xmax, num=numPoints)
print(X_Values)
Y_Values = []
for theta in X_Values:
# for alpha in X_Values:
print('Situation of Lemma1.4')
q12 = 0.0
q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
b1 = prestrain_b1(rho1, beta, alpha,theta)
b2 = prestrain_b2(rho1, beta, alpha,theta)
b3 = 0.0
if gamma == '0':
q3 = q2
if gamma == 'infinity':
q3 = q1
if yName == 'q1': # TODO: Better use dictionary?...
print('q1 used')
Y_Values.append(q1)
elif yName =='q2':
print('q2 used')
Y_Values.append(q2)
elif yName =='q3':
print('q3 used')
Y_Values.append(q3)
elif yName =='q12':
print('q12 used')
Y_Values.append(q12)
elif yName =='b1':
print('b1 used')
Y_Values.append(b1)
elif yName =='b2':
print('b2 used')
Y_Values.append(b2)
elif yName =='b3':
print('b3 used')
Y_Values.append(b3)
elif yName == 'angle' or yName =='type' or yName =='curvature':
G, angle, Type, curvature = classifyMin_ana(alpha,beta,theta, q3, mu1, rho1)
if yName =='angle':
print('angle used')
Y_Values.append(angle)
if yName =='type':
print('angle used')
Y_Values.append(type)
if yName =='curvature':
print('curvature used')
Y_Values.append(curvature)
print("(Output) Values of " + yName + ": ", Y_Values)
idx = find_nearestIdx(Y_Values, 0)
print(' Idx of value closest to 0:', idx)
print('GammaValue(Idx) with mu_gamma closest to q_3^*:', ValueClose)
print('Theta(Idx) with curvature closest to 0:', ValueClose)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Find Indices where the difference between the next one is larger than epsilon...
jump_idx = []
jump_xValues = []
jump_yValues = []
tmp = X_Values[0]
for idx, x in enumerate(X_Values):
print(idx, x)
if idx > 0:
if abs(Y_Values[idx]-Y_Values[idx-1]) > 1:
print('jump candidate')
jump_idx.append(idx)
jump_xValues.append(x)
jump_yValues.append(Y_Values[idx])
print("Jump Indices", jump_idx)
print("Jump X-values:", jump_xValues)
print("Jump Y-values:", jump_yValues)
y_plotValues = [Y_Values[0]]
x_plotValues = [X_Values[0]]
# y_plotValues.extend(jump_yValues)
for i in jump_idx:
y_plotValues.extend([Y_Values[i-1], Y_Values[i]])
x_plotValues.extend([X_Values[i-1], X_Values[i]])
y_plotValues.append(Y_Values[-1])
# x_plotValues = [X_Values[0]]
# x_plotValues.extend(jump_xValues)
x_plotValues.append(X_Values[-1])
print("y_plotValues:", y_plotValues)
print("x_plotValues:", x_plotValues)
# Y_Values[np.diff(y) >= 0.5] = np.nan
#get values bigger than jump position
x_rest = X_Values[X_Values>x_plotValues[1]]
Y_Values = np.array(Y_Values) #convert the np array
y_rest = Y_Values[X_Values>x_plotValues[1]]
# y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]]
print('X_Values:', X_Values)
print('Y_Values:', Y_Values)
print('x_rest:', x_rest)
print('y_rest:', y_rest)
print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
# --- Convert to numpy array
Y_Values = np.array(Y_Values)
X_Values = np.array(X_Values)
# ---------------- Create Plot -------------------
mpl.rcParams['text.usetex'] = True
mpl.rcParams["font.family"] = "serif"
mpl.rcParams["font.size"] = "9"
# width as measured in inkscape
width = 6.28 *0.5
height = width / 1.618
fig = plt.figure()
ax = plt.axes((0.15,0.18,0.8,0.8))
ax.tick_params(axis='x',which='major', direction='out',pad=3)
ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
ax.xaxis.set_major_locator(MultipleLocator(0.05))
ax.xaxis.set_minor_locator(MultipleLocator(0.025))
ax.grid(True,which='major',axis='both',alpha=0.3)
# plt.figure()
# f,ax=plt.subplots(1)
ax.set_xlabel(r"volume fraction $\theta$")
ax.set_ylabel(r"curvature $\kappa$")
# plt.xlabel(xName)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# plt.ylabel('$\kappa$')
# ax.grid(True)
# Add transition Points
if gamma == '0':
transition_point1 = 0.13663316582914573
transition_point2 = 0.20899497487437185
plt.axvline(transition_point1,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
plt.axvline(transition_point2,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
ax.plot(X_Values[np.where(np.logical_and(X_Values>jump_xValues[0], X_Values<jump_xValues[1])) ], Y_Values[np.where(np.logical_and(X_Values>jump_xValues[0] ,X_Values<jump_xValues[1] ))] ,'royalblue')
ax.plot(X_Values[X_Values>jump_xValues[1]], Y_Values[X_Values>jump_xValues[1]], 'royalblue')
# ax.plot(x_plotValues,y_plotValues, 'royalblue')
ax.scatter([transition_point1, transition_point2],[jump_yValues[0], jump_yValues[1]],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
ax.text(transition_point1-0.02 , jump_yValues[0]-0.02, r"$4$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
)
ax.text(transition_point2+0.012 , jump_yValues[1]+0.02, r"$5$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
)
if gamma == 'infinity':
transition_point1 = 0.13663316582914573
transition_point2 = 0.1929145728643216
transition_point3 = 0.24115577889447234
plt.axvline(transition_point1,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
plt.axvline(transition_point2,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
plt.axvline(transition_point3,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
ax.plot(X_Values[X_Values>jump_xValues[0]], Y_Values[X_Values>jump_xValues[0]], 'royalblue')
idx1 = find_nearestIdx(X_Values, transition_point1)
idx2 = find_nearestIdx(X_Values, transition_point2)
print('idx1', idx1)
print('idx2', idx2)
Y_TP1 = Y_Values[idx1]
Y_TP2 = Y_Values[idx2]
print('Y_TP1', Y_TP1)
print('Y_TP2', Y_TP2)
ax.scatter([transition_point1, transition_point2],[Y_TP1, Y_TP2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
ax.text(transition_point1-0.02 , Y_TP1-0.02, r"$6$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
)
ax.text(transition_point2+0.015 , Y_TP2+0.020, r"$7$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
# for x in jump_xValues:
# plt.axvline(x,ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
fig.set_size_inches(width, height)
fig.savefig('Plot-Curvature-Theta.pdf')