Skip to content
Snippets Groups Projects
Plot_Curvature_Alpha.py 28 KiB
Newer Older
  • Learn to ignore specific revisions
  • Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    import numpy as np
    import matplotlib.pyplot as plt
    import sympy as sym
    import math
    import os
    import subprocess
    import fileinput
    import re
    import matlab.engine
    from HelperFunctions import *
    
    # from ClassifyMin import *
    from ClassifyMin_New import *
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    import matplotlib.ticker as tickers
    import matplotlib as mpl
    from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
    import pandas as pd
    
    # import tikzplotlib
    # # from pylab import *
    # from tikzplotlib import save as tikz_save
    
    
    # Needed ?
    mpl.use('pdf')
    
    # from subprocess import Popen, PIPE
    #import sys
    
    ###################### makePlot.py #########################
    #  Generalized Plot-Script giving the option to define
    #  quantity of interest and the parameter it depends on
    #  to create a plot
    #
    #  Input: Define y & x for "x-y plot" as Strings
    #  - Run the 'Cell-Problem' for the different Parameter-Points
    #  (alternatively run 'Compute_MuGamma' if quantity of interest
    #   is q3=muGamma for a significant Speedup)
    
    ###########################################################
    
    
    
    # figsize argument takes inputs in inches
    # and we have the width of our document in pts.
    # To set the figure size we construct a function
    # to convert from pts to inches and to determine
    # an aesthetic figure height using the golden ratio:
    # def set_size(width, fraction=1):
    #     """Set figure dimensions to avoid scaling in LaTeX.
    #
    #     Parameters
    #     ----------
    #     width: float
    #             Document textwidth or columnwidth in pts
    #     fraction: float, optional
    #             Fraction of the width which you wish the figure to occupy
    #
    #     Returns
    #     -------
    #     fig_dim: tuple
    #             Dimensions of figure in inches
    #     """
    #     # Width of figure (in pts)
    #     fig_width_pt = width * fraction
    #
    #     # Convert from pt to inches
    #     inches_per_pt = 1 / 72.27
    #
    #     # Golden ratio to set aesthetic figure height
    #     # https://disq.us/p/2940ij3
    #     golden_ratio = (5**.5 - 1) / 2
    #
    #     # Figure width in inches
    #     fig_width_in = fig_width_pt * inches_per_pt
    #     # Figure height in inches
    #     fig_height_in = fig_width_in * golden_ratio
    #
    #     fig_dim = (fig_width_in, fig_height_in)
    #
    #     return fig_dim
    #
    
    
    
    def format_func(value, tick_number):
        # # find number of multiples of pi/2
        # N = int(np.round(2 * value / np.pi))
        # if N == 0:
        #     return "0"
        # elif N == 1:
        #     return r"$\pi/2$"
        # elif N == 2:
        #     return r"$\pi$"
        # elif N % 2 > 0:
        #     return r"${0}\pi/2$".format(N)
        # else:
        #     return r"${0}\pi$".format(N // 2)
        # find number of multiples of pi/2
        N = int(np.round(4 * value / np.pi))
        if N == 0:
            return "0"
        elif N == 1:
            return r"$\pi/4$"
        elif N == 2:
            return r"$\pi/2$"
        elif N % 2 > 0:
            return r"${0}\pi/2$".format(N)
        else:
            return r"${0}\pi$".format(N // 2)
    
    
    
    
    
    def find_nearest(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return array[idx]
    
    
    def find_nearestIdx(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return idx
    
    
    
    # TODO
    # - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3
    # - Also Add option to plot Minimization Output
    
    
    # ----- Setup Paths -----
    # InputFile  = "/inputs/cellsolver.parset"
    # OutputFile = "/outputs/output.txt"
    
    InputFile  = "/inputs/computeMuGamma.parset"
    OutputFile = "/outputs/outputMuGamma.txt"
    
    # path = os.getcwd()
    # InputFilePath = os.getcwd()+InputFile
    # OutputFilePath = os.getcwd()+OutputFile
    # --------- Run  from src folder:
    path_parent = os.path.dirname(os.getcwd())
    os.chdir(path_parent)
    path = os.getcwd()
    print(path)
    InputFilePath = os.getcwd()+InputFile
    OutputFilePath = os.getcwd()+OutputFile
    print("InputFilepath: ", InputFilePath)
    print("OutputFilepath: ", OutputFilePath)
    print("Path: ", path)
    
    #---------------------------------------------------------------
    
    print('---- Input parameters: -----')
    mu1 = 1.0  #10.0
    # lambda1 = 10.0
    rho1 = 1.0
    alpha = 5.0
    beta = 10.0
    # alpha = 2.0
    # beta = 2.0
    theta = 1.0/8.0  #1.0/4.0
    
    lambda1 = 0.0
    # gamma = 1.0/4.0
    
    # TEST:
    alpha=3.0;
    
    
    
    
    # # INTERESTING!:
    alpha = 3
    beta = 10.0
    theta= 1/8
    
    
    
    theta = 0.5
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    theta = 0.1
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    #TEST
    beta = 2.0
    theta = 0.5
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # theta = 0.1
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    gamma = 'infinity'  #Elliptic Setting
    
    gamma = '0'       #Hyperbolic Setting
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # gamma = 0.5
    
    
    print('mu1: ', mu1)
    print('rho1: ', rho1)
    print('alpha: ', alpha)
    print('beta: ', beta)
    print('theta: ', theta)
    print('gamma:', gamma)
    print('----------------------------')
    
    
    
    # --- define Interval of x-va1ues:
    # xmin = 0.01
    # xmax = 0.41
    # xmax = 0.99
    
    
    xmin = -2.0
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    xmax = 1.0
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # xmax = 5.0
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # compare with interpolant between endpoints
    # xmin = -0.7014028056112225
    # xmax = 0.70
    compare_interpolant = False
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # xmin = -5.0
    # xmax = 5.0
    
    Jumps = False
    Jumps = True
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    numPoints = 15
    numPoints = 500
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    X_Values = np.linspace(xmin, xmax, num=numPoints)
    print(X_Values)
    
    
    Y_Values = []
    
    
    
    
    Curvature_alpha0 = []
    Curvature_alphaNeg0125 = []
    Curvature_alphaNeg025 = []
    Curvature_alphaNeg05 = []
    Curvature_alphaNeg075 = []
    Curvature_alphaNeg1 = []
    Curvature_alpha3 = []
    Curvature_alphaNeg5 = []
    
    
    
    
    
    for alpha in X_Values:
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # print('Situation of Lemma1.4')
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        q12 = 0.0
        q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
        q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
        b1 = prestrain_b1(rho1, beta, alpha,theta)
        b2 = prestrain_b2(rho1, beta, alpha,theta)
        b3 = 0.0
        q3 = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
    
        G, angle, Type, curvature = classifyMin_ana(alpha,beta,theta, q3,  mu1, rho1)
        Y_Values.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg1.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg05 .append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.25,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg025.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(3.0,beta,theta, q3,  mu1, rho1)
        # Curvature_alpha3.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.75,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg075.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(0,beta,theta, q3,  mu1, rho1)
        # Curvature_alpha0.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.125,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg0125.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-5.0,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg5.append(curvature)
    
    print("(Output) Values of Curvature: ", Y_Values)
    
    
    idx = find_nearestIdx(Y_Values, 0)
    print(' Idx of value  closest to 0', idx)
    ValueClose = Y_Values[idx]
    print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose)
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # jumpThreshold = 0.5
    jumpThreshold = 0.05
    # jumpThreshold = 0.01
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    # Find Indices where the difference between the next one is larger than epsilon...
    jump_idx = []
    jump_xValues = []
    jump_yValues = []
    tmp = X_Values[0]
    for idx, x in enumerate(X_Values):
        print(idx, x)
        if idx > 0:
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            if abs(Y_Values[idx]-Y_Values[idx-1]) > jumpThreshold :
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                print('jump candidate')
                jump_idx.append(idx)
                jump_xValues.append(x)
                jump_yValues.append(Y_Values[idx])
    
    
    
    
    
    
    
    print("Jump Indices", jump_idx)
    print("Jump X-values:", jump_xValues)
    print("Jump Y-values:", jump_yValues)
    
    y_plotValues = [Y_Values[0]]
    x_plotValues = [X_Values[0]]
    # y_plotValues.extend(jump_yValues)
    for i in jump_idx:
        y_plotValues.extend([Y_Values[i-1], Y_Values[i]])
        x_plotValues.extend([X_Values[i-1], X_Values[i]])
    
    
    y_plotValues.append(Y_Values[-1])
    # x_plotValues = [X_Values[0]]
    # x_plotValues.extend(jump_xValues)
    x_plotValues.append(X_Values[-1])
    
    
    print("y_plotValues:", y_plotValues)
    print("x_plotValues:", x_plotValues)
    # Y_Values[np.diff(y) >= 0.5] = np.nan
    
    
    #get values bigger than jump position
    # gamma = infty
    # x_rest = X_Values[X_Values>x_plotValues[1]]
    # Y_Values = np.array(Y_Values)  #convert the np array
    # y_rest = Y_Values[X_Values>x_plotValues[1]]
    #
    #
    # # gamma = 0
    # x_rest = X_Values[X_Values>x_plotValues[3]]
    # Y_Values = np.array(Y_Values)  #convert the np array
    # y_rest = Y_Values[X_Values>x_plotValues[3]]
    
    # gamma between
    # Y_Values = np.array(Y_Values)  #convert the np array
    # X_Values = np.array(X_Values)  #convert the np array
    #
    # x_one = X_Values[X_Values>x_plotValues[3]]
    # # ax.scatter(X_Values, Y_Values)
    # y_rest = Y_Values[X_Values>x_plotValues[3]]
    # ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135])
    #
    #
    #
    
    
    # y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]]
    # print('X_Values:', X_Values)
    # print('Y_Values:', Y_Values)
    # print('x_rest:', x_rest)
    # print('y_rest:', y_rest)
    # print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
    
    
    
    
    # --- Convert to numpy array
    Y_Values = np.array(Y_Values)
    X_Values = np.array(X_Values)
    
    
    Curvature_alphaNeg1 = np.array(Curvature_alphaNeg1)
    Curvature_alphaNeg05 = np.array(Curvature_alphaNeg05)
    Curvature_alphaNeg025 = np.array(Curvature_alphaNeg025)
    Curvature_alphaNeg075 = np.array(Curvature_alphaNeg075)
    Curvature_alpha3 = np.array(Curvature_alpha3)
    Curvature_alphaNeg0 = np.array(Curvature_alpha0)
    Curvature_alphaNeg0125 = np.array(Curvature_alphaNeg0125)
    Curvature_alphaNeg5 = np.array(Curvature_alphaNeg5)
    # ---------------- Create Plot -------------------
    
    # mpl.rcParams['text.usetex'] = True
    # mpl.rcParams["font.family"] = "serif"
    # mpl.rcParams["font.size"] = "9"
    
    # Styling
    plt.style.use("seaborn-darkgrid")
    plt.style.use("seaborn-whitegrid")
    plt.style.use("seaborn")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # plt.style.use("seaborn-paper")
    
    # plt.style.use('ggplot')
    # plt.rcParams["font.family"] = "Avenir"
    # plt.rcParams["font.size"] = 16
    
    # plt.style.use("seaborn-darkgrid")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    mpl.rcParams['text.usetex'] = True
    mpl.rcParams["font.family"] = "serif"
    
    mpl.rcParams["font.size"] = "10"
    # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5
    # mpl.rcParams['xtick.bottom'] = True
    # mpl.rcParams['ticks'] = True
    mpl.rcParams['xtick.bottom'] = True
    mpl.rcParams['xtick.major.size'] = 3
    mpl.rcParams['xtick.minor.size'] = 1.5
    mpl.rcParams['xtick.major.width'] = 0.75
    mpl.rcParams['ytick.left'] = True
    mpl.rcParams['ytick.major.size'] = 3
    mpl.rcParams['ytick.minor.size'] = 1.5
    mpl.rcParams['ytick.major.width'] = 0.75
    
    mpl.rcParams.update({'font.size': 10})
    mpl.rcParams['axes.labelpad'] = 2
    ### ADJUST GRID:
    
    mpl.rcParams['grid.linewidth'] = 0.25
    mpl.rcParams['grid.alpha'] = 0.9 # 0.75
    mpl.rcParams['grid.linestyle'] = '-'
    mpl.rcParams['grid.color']   = 'gray'#'black'
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    
    
    
    #---- Scale Figure apropriately to fit tex-File Width
    # width = 452.9679
    
    # width as measured in inkscape
    width = 6.28 *0.5
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # width = 6.28
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    height = width / 1.618
    
    #setup canvas first
    fig = plt.figure()      #main
    # fig, ax = plt.subplots()
    # fig, (ax, ax2) = plt.subplots(ncols=2)
    # fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot
    
    
    # fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97)  #TEST
    
    
    # TEST
    # mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1)
    # fig = plt.figure(figsize=(width+0.1,height+0.1))
    
    
    # mpl.rcParams['figure.figsize'] = (width,height)
    # fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
    # fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
    # fig = plt.figure(figsize=set_size(width))
    # fig = plt.subplots(1, 1, figsize=set_size(width))
    
    # --- To create a figure half the width of your document:#
    # fig = plt.figure(figsize=set_size(width, fraction=0.5))
    
    
    
    #--- You must select the correct size of the plot in advance
    # fig.set_size_inches(3.54,3.54)
    
    # ax = plt.axes((0.15,0.18,0.8,0.8))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # ax = plt.axes((0.15,0.18,0.6,0.6))
    ax = plt.axes((0.15,0.2,0.75,0.75))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # ax = plt.axes((0.1,0.1,0.5,0.8))
    # ax = plt.axes((0.1,0.1,1,1))
    # ax = plt.axes()
    
    # ax.spines['right'].set_visible(False)
    # ax.spines['left'].set_visible(False)
    # ax.spines['bottom'].set_visible(False)
    # ax.spines['top'].set_visible(False)
    # ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green',
    #                labelrotation=15)
    # ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10)
    # ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10)
    ax.tick_params(axis='x',which='major', direction='out',pad=3)
    ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
    # ax.xaxis.set_major_locator(MultipleLocator(0.05))
    # ax.xaxis.set_minor_locator(MultipleLocator(0.025))
    ax.xaxis.set_major_locator(MultipleLocator(0.1))
    ax.xaxis.set_minor_locator(MultipleLocator(0.05))
    
    ax.xaxis.set_major_locator(MultipleLocator(0.5))
    ax.xaxis.set_minor_locator(MultipleLocator(0.25))
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    #---- print data-types
    print(ax.xaxis.get_major_locator())
    print(ax.xaxis.get_minor_locator())
    print(ax.xaxis.get_major_formatter())
    print(ax.xaxis.get_minor_formatter())
    
    #---- Hide Ticks or Labels
    # ax.yaxis.set_major_locator(plt.NullLocator())
    # ax.xaxis.set_major_formatter(plt.NullFormatter())
    
    #---- Reducing or Increasing the Number of Ticks
    # ax.xaxis.set_major_locator(plt.MaxNLocator(3))
    # ax.yaxis.set_major_locator(plt.MaxNLocator(3))
    
    
    #----- Fancy Tick Formats
    # ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4))
    # ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
    # ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
    
    
    
    
    
    
    
    # --- manually change ticks&labels:
    # ax.set_xticks([0.2,1])
    # ax.set_xticklabels(['pos1','pos2'])
    
    # ax.set_yticks([0, np.pi/8, np.pi/4 ])
    # labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
    # ax.set_yticklabels(labels)
    
    a=ax.yaxis.get_major_locator()
    b=ax.yaxis.get_major_formatter()
    c = ax.get_xticks()
    d = ax.get_xticklabels()
    print('xticks:',c)
    print('xticklabels:',d)
    
    ax.grid(True,which='major',axis='both',alpha=0.3)
    
    
    
    
    
    
    # plt.figure()
    
    # f,ax=plt.subplots(1)
    
    # plt.title(r''+ yName + '-Plot')
    # plt.plot(X_Values, Y_Values,linewidth=2, '.k')
    # plt.plot(X_Values, Y_Values,'.k',markersize=1)
    # plt.plot(X_Values, Y_Values,'.',markersize=0.8)
    
    # plt.plot(X_Values, Y_Values)
    
    # ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
    
    
    
    # Gamma = '0'
    # ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b')
    #
    # ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b')
    #
    # ax.plot(x_rest, y_rest, 'b')
    
    
    # Gamma between
    
    # x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093]
    
    # ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b')
    # ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b')
    
    # ax.plot([[0,0.13606060606060608], [0, 0]] , 'b')
    # ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b')
    
    # jump_xValues[0]
    
    
    
    # --- leave out jumps:
    # ax.scatter(X_Values, Y_Values)
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # ax.set_xlabel(r"prestrain ratio $\theta_\rho$")
    ax.set_xlabel(r"$\theta_\rho$")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    ax.set_ylabel(r"Curvature $\kappa$")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    if Jumps:
        # # --- leave out jumps:
        # if gamma == 'infinity':
        #     ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue')
        #     ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        ## Plot every other line.. not the jumps..
        # if gamma == '0':
        #     tmp = 1
        #     for idx, x in enumerate(x_plotValues):
        #         if idx > 0 and tmp == 1:
        #             # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] )
        #             ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue', zorder=2)
        #             tmp = 0
        #         else:
        #             tmp = 1
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    
    
        for x in jump_xValues:
            plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1, zorder=1)
            # plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed',  label=r'$\theta_*$')
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
        # print('jump_idx[0]:',jump_idx[0])
        # print('X_Values[jump_idx[0]]',X_Values[jump_idx[0]])
        # print('X_Values[jump_idx[1]]',X_Values[jump_idx[1]])
        # print('Y_Values[jump_idx[0]]',Y_Values[jump_idx[0]])
        # print('Y_Values[jump_idx[1]]',Y_Values[jump_idx[1]])
    
        # Better use for-loop!!
    
        if gamma == '0':
            ax.scatter([X_Values[jump_idx[0]], X_Values[jump_idx[1]]],[Y_Values[jump_idx[0]],Y_Values[jump_idx[1]]],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
                                          edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=5)
    
            # ax.text(X_Values[jump_idx[0]]+0.05, Y_Values[jump_idx[0]]+0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
            #                        )
            #
            # ax.text(X_Values[jump_idx[1]]+0.05, Y_Values[jump_idx[1]]+0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            ax.text(X_Values[jump_idx[0]]+0.10, Y_Values[jump_idx[0]]+0.10, r"$1$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            ax.text(X_Values[jump_idx[1]]+0.10, Y_Values[jump_idx[1]]+0.10, r"$2$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
        else :
    
            ax.scatter([X_Values[jump_idx[0]]],[Y_Values[jump_idx[0]]],s=8, marker='o', cmap=None, norm=None, facecolor = 'black',
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                                          edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=5)
    
            # ax.text(X_Values[jump_idx[0]]+0.05, Y_Values[jump_idx[0]]+0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
            #                        )
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            ax.text(X_Values[jump_idx[0]]+0.10, Y_Values[jump_idx[0]]+0.10, r"$1$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                                   )
    
            # ax.text(X_Values[jump_idx[1]]+0.05, Y_Values[jump_idx[1]]+0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
    
        # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
        # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
        # plt.legend()
    
    
        # -- SETUP LEGEND
        # ax.legend(prop={'size': 11})
        # ax.legend()
    
        # ------------------ SAVE FIGURE
        # tikzplotlib.save("TesTout.tex")
        # plt.close()
        # mpl.rcParams.update(mpl.rcParamsDefault)
    
        # plt.savefig("graph.pdf",
        #             #This is simple recomendation for publication plots
        #             dpi=1000,
        #             # Plot will be occupy a maximum of available space
        #             bbox_inches='tight',
        #             )
        # plt.savefig("graph.pdf")
    
    
    
        # ---- ADD additional scatter:
        # ax.scatter(X_Values,Y_Values,s=1,c='black',zorder=4)
    
        # Find transition point
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # lastIdx = len(Y_Values)-1
        #
        # for idx, y in enumerate(Y_Values):
        #     if idx != lastIdx:
        #         if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05:
        #             transition_point1 = X_Values[idx+1]
        #             print('transition point1:', transition_point1 )
        #         if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01:
        #             transition_point2 = X_Values[idx]
        #             print('transition point2:', transition_point2 )
        #         if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01:
        #             transition_point3 = X_Values[idx+1]
        #             print('transition point3:', transition_point3 )
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
        # Add transition Points
        if gamma == '0':
            # transition_point1 =  0.13663316582914573
            # transition_point2 =  0.20899497487437185
            # plt.axvline(transition_point1,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
            # plt.axvline(transition_point2,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
    
    
            plt.axvline(jump_xValues[0],ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
            # ax.plot(X_Values[X_Values>jump_xValues[0]], Y_Values[X_Values>jump_xValues[0]], 'royalblue')
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # l1 = ax.scatter(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
            l1 = ax.scatter(X_Values,Y_Values,s=0.75, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # l1 = ax.plot(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
            # l1 = ax.plot(X_Values,Y_Values, color='forestgreen', linewidth=1.5, zorder=3, label = 'test')
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # plt.axvline(jump_xValues[0],ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
            #
            # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
            # ax.plot(X_Values[np.where(np.logical_and(X_Values>jump_xValues[0], X_Values<jump_xValues[1])) ], Y_Values[np.where(np.logical_and(X_Values>jump_xValues[0] ,X_Values<jump_xValues[1] ))] ,'royalblue')
            # ax.plot(X_Values[X_Values>jump_xValues[1]], Y_Values[X_Values>jump_xValues[1]], 'royalblue')
            # # ax.plot(x_plotValues,y_plotValues, 'royalblue')
            # ax.scatter([transition_point1, transition_point2],[jump_yValues[0], jump_yValues[1]],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
            #                           edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            #
            # ax.text(transition_point1-0.02 , jump_yValues[0]-0.02, r"$4$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
            #                    )
            #
            # ax.text(transition_point2+0.012 , jump_yValues[1]+0.02, r"$5$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
            #                )
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        else :
            plt.axvline(jump_xValues[0],ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
            # ax.plot(X_Values[X_Values>jump_xValues[0]], Y_Values[X_Values>jump_xValues[0]], 'royalblue')
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # l1 = ax.scatter(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
            l1 = ax.scatter(X_Values,Y_Values,s=0.75, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # idx1 = find_nearestIdx(X_Values, transition_point1)
            # idx2 = find_nearestIdx(X_Values, transition_point2)
            # print('idx1', idx1)
            # print('idx2', idx2)
            # Y_TP1 = Y_Values[idx1]
            # Y_TP2 = Y_Values[idx2]
            # print('Y_TP1', Y_TP1)
            # print('Y_TP2', Y_TP2)
    
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # ax.scatter([transition_point1, transition_point2],[Y_TP1, Y_TP2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
            #                           edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
    
    
            # ax.text(transition_point1-0.02 , Y_TP1-0.02, r"$6$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
            # ax.text(transition_point2+0.015 , Y_TP2+0.020, r"$7$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
            # ax.scatter(jump_xValues,jump_yValues,s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
            #                          edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # ax.text(jump_xValues[0]+0.05 , jump_yValues[0]+0.02, r"$6$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    else:
        # ax.scatter(X_Values,Y_Values,s=1, marker='o', cmap=None, norm=None, facecolor = 'blue',
        #                           edgecolor = 'none', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
        # ---------------------------------------------------------------
        # l1 = ax.scatter(X_Values,Curvature_alphaNeg5,s=1, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=3)
        # l2 = ax.scatter(X_Values,Curvature_alphaNeg1,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3, label=r"$\theta_\rho = -1.0$")
        # l3 = ax.scatter(X_Values,Curvature_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
        # l4 = ax.scatter(X_Values,Curvature_alphaNeg05,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
        # l5 = ax.scatter(X_Values,Curvature_alphaNeg025,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
        # l6 = ax.scatter(X_Values,Curvature_alphaNeg0125,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
        # l7 = ax.scatter(X_Values,Curvature_alpha0,s=1, marker='o', edgecolor = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=0.75, linewidths=None, zorder=4)
        # l8 = ax.scatter(X_Values,Curvature_alpha3,s=1, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=4)
        # # l4 = ax.scatter(X_Values,Curvature_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3)
        #
        # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7, l8],
        #           labels= [r"$\theta_\rho = -5.0$",  r"$\theta_\rho = -1.0$",r"$\theta_\rho = -0.75$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = -0.125$",  r"$\theta_\rho = 0$",    r"$\theta_\rho = 3.0$"  ],
        #           loc='upper left',
        #           bbox_to_anchor=(1,1))
        # ---------------------------------------------------------------
    
    
        # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = 3.0$"]
        # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8  ])
        # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$']
        # ax.set_yticklabels(labels)
        # ax.set_yticks([1.570786327, np.pi/2 ])
        # labels = [r'$\pi/2-0.0005 $' , r'$\pi/2$']
        # ax.set_yticklabels(labels)
    
    
        # fig.legend([l1, l2, l3, l4],     # The line objects
        #            labels=line_labels,   # The labels for each line
        #            # loc="upper center",   # Position of legend
        #            loc='upperleft', bbox_to_anchor=(1,1),
        #            borderaxespad=0.15    # Small spacing around legend box
        #            # title="Legend Title"  # Title for the legend
        #            )
    
    
    
    
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        # l1 = ax.plot(X_Values,Y_Values, color='forestgreen', linewidth=1.5, zorder=3, label = 'test')
        l1 = ax.scatter(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
    
        # l1 = ax.scatter(X_Values,Y_Values,s=6, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
        #compare with interpolant between endpoints
        if compare_interpolant:
            ax.plot([X_Values[0],X_Values[-1]],[Y_Values[0],Y_Values[-1]])
    
    Outputname = 'Plot-Curvature-Alpha_Gamma' + str(gamma) + '.pdf'
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    fig.set_size_inches(width, height)
    
    fig.savefig(Outputname)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    
    # tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm')
    
    # tikz_save('fig.tikz',
    #            figureheight = '\\figureheight',
    #            figurewidth = '\\figurewidth')
    
    # ----------------------------------------
    
    
    plt.show()
    # #---------------------------------------------------------------