Skip to content
Snippets Groups Projects
Plot_Curvature_TransitionArea.py 29.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    import numpy as np
    import matplotlib.pyplot as plt
    import sympy as sym
    import math
    import os
    import subprocess
    import fileinput
    import re
    import matlab.engine
    from HelperFunctions import *
    from ClassifyMin import *
    
    import matplotlib.ticker as tickers
    import matplotlib as mpl
    from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
    import pandas as pd
    
    # import tikzplotlib
    # # from pylab import *
    # from tikzplotlib import save as tikz_save
    
    
    # Needed ?
    mpl.use('pdf')
    
    # from subprocess import Popen, PIPE
    #import sys
    
    ###################### makePlot.py #########################
    #  Generalized Plot-Script giving the option to define
    #  quantity of interest and the parameter it depends on
    #  to create a plot
    #
    #  Input: Define y & x for "x-y plot" as Strings
    #  - Run the 'Cell-Problem' for the different Parameter-Points
    #  (alternatively run 'Compute_MuGamma' if quantity of interest
    #   is q3=muGamma for a significant Speedup)
    
    ###########################################################
    
    
    
    # figsize argument takes inputs in inches
    # and we have the width of our document in pts.
    # To set the figure size we construct a function
    # to convert from pts to inches and to determine
    # an aesthetic figure height using the golden ratio:
    # def set_size(width, fraction=1):
    #     """Set figure dimensions to avoid scaling in LaTeX.
    #
    #     Parameters
    #     ----------
    #     width: float
    #             Document textwidth or columnwidth in pts
    #     fraction: float, optional
    #             Fraction of the width which you wish the figure to occupy
    #
    #     Returns
    #     -------
    #     fig_dim: tuple
    #             Dimensions of figure in inches
    #     """
    #     # Width of figure (in pts)
    #     fig_width_pt = width * fraction
    #
    #     # Convert from pt to inches
    #     inches_per_pt = 1 / 72.27
    #
    #     # Golden ratio to set aesthetic figure height
    #     # https://disq.us/p/2940ij3
    #     golden_ratio = (5**.5 - 1) / 2
    #
    #     # Figure width in inches
    #     fig_width_in = fig_width_pt * inches_per_pt
    #     # Figure height in inches
    #     fig_height_in = fig_width_in * golden_ratio
    #
    #     fig_dim = (fig_width_in, fig_height_in)
    #
    #     return fig_dim
    #
    
    
    
    def format_func(value, tick_number):
        # # find number of multiples of pi/2
        # N = int(np.round(2 * value / np.pi))
        # if N == 0:
        #     return "0"
        # elif N == 1:
        #     return r"$\pi/2$"
        # elif N == 2:
        #     return r"$\pi$"
        # elif N % 2 > 0:
        #     return r"${0}\pi/2$".format(N)
        # else:
        #     return r"${0}\pi$".format(N // 2)
        # find number of multiples of pi/2
        N = int(np.round(4 * value / np.pi))
        if N == 0:
            return "0"
        elif N == 1:
            return r"$\pi/4$"
        elif N == 2:
            return r"$\pi/2$"
        elif N % 2 > 0:
            return r"${0}\pi/2$".format(N)
        else:
            return r"${0}\pi$".format(N // 2)
    
    
    
    
    
    def find_nearest(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return array[idx]
    
    
    def find_nearestIdx(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return idx
    
    
    
    # TODO
    # - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3
    # - Also Add option to plot Minimization Output
    
    
    # ----- Setup Paths -----
    # InputFile  = "/inputs/cellsolver.parset"
    # OutputFile = "/outputs/output.txt"
    
    InputFile  = "/inputs/computeMuGamma.parset"
    OutputFile = "/outputs/outputMuGamma.txt"
    
    # path = os.getcwd()
    # InputFilePath = os.getcwd()+InputFile
    # OutputFilePath = os.getcwd()+OutputFile
    # --------- Run  from src folder:
    path_parent = os.path.dirname(os.getcwd())
    os.chdir(path_parent)
    path = os.getcwd()
    print(path)
    InputFilePath = os.getcwd()+InputFile
    OutputFilePath = os.getcwd()+OutputFile
    print("InputFilepath: ", InputFilePath)
    print("OutputFilepath: ", OutputFilePath)
    print("Path: ", path)
    
    #---------------------------------------------------------------
    
    print('---- Input parameters: -----')
    mu1 = 1.0  #10.0
    # lambda1 = 10.0
    rho1 = 1.0
    alpha = 5.0
    beta = 10.0
    # alpha = 2.0
    # beta = 2.0
    theta = 1.0/8.0  #1.0/4.0
    
    lambda1 = 0.0
    # gamma = 1.0/4.0
    
    # TEST:
    alpha=3.0;
    
    
    
    
    # # INTERESTING!:
    # alpha = 3
    # beta = 10.0
    # theta= 1/8
    
    
    #Test
    beta = 2.0
    
    
    
    gamma = 'infinity'  #Elliptic Setting
    # gamma = '0'       #Hyperbolic Setting
    # gamma = 0.5
    
    
    print('mu1: ', mu1)
    print('rho1: ', rho1)
    print('alpha: ', alpha)
    print('beta: ', beta)
    print('theta: ', theta)
    print('gamma:', gamma)
    print('----------------------------')
    
    
    
    # --- define Interval of x-va1ues:
    xmin = 0.01
    xmax = 0.41
    xmax = 0.99
    
    
    Jumps = False
    
    
    numPoints = 400
    # numPoints = 100
    X_Values = np.linspace(xmin, xmax, num=numPoints)
    print(X_Values)
    
    
    Y_Values = []
    
    
    
    
    Curvature_alpha0 = []
    Curvature_alphaNeg0125 = []
    Curvature_alphaNeg025 = []
    
    
    
    Curvature_alphaNeg05 = []
    Curvature_alphaNeg055 = []
    Curvature_alphaNeg06 = []
    Curvature_alphaNeg065 = []
    Curvature_alphaNeg07 = []
    Curvature_alphaNeg075 = []
    Curvature_alphaNeg08 = []
    Curvature_alphaNeg085 = []
    Curvature_alphaNeg09 = []
    Curvature_alphaNeg095 = []
    Curvature_alphaNeg1 = []
    
    
    
    Curvature_alpha3 = []
    Curvature_alphaNeg5 = []
    
    
    
    for theta in X_Values:
        print('Situation of Lemma1.4')
        q12 = 0.0
        q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
        q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
        b1 = prestrain_b1(rho1, beta, alpha,theta)
        b2 = prestrain_b2(rho1, beta, alpha,theta)
        b3 = 0.0
        q3 = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
    
        # G, angle, Type, curvature = classifyMin_ana(alpha,beta,theta, q3,  mu1, rho1)
        # Y_Values.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg1.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg05 .append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.25,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg025.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(3.0,beta,theta, q3,  mu1, rho1)
        # Curvature_alpha3.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.75,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg075.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(0,beta,theta, q3,  mu1, rho1)
        # Curvature_alpha0.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-0.125,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg0125.append(curvature)
        # G, angle, Type, curvature = classifyMin_ana(-5.0,beta,theta, q3,  mu1, rho1)
        # Curvature_alphaNeg5.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg05.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.55,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg055.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.6,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg06.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.65,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg065.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.7,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg07.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.75,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg075.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.8,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg08.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.85,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg085.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.9,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg09.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-0.95,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg095.append(curvature)
    
        G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3,  mu1, rho1)
        Curvature_alphaNeg1.append(curvature)
    
    print("(Output) Values of Curvature: ", Y_Values)
    
    
    # idx = find_nearestIdx(Y_Values, 0)
    # print(' Idx of value  closest to 0', idx)
    # ValueClose = Y_Values[idx]
    # print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose)
    
    
    
    # Find Indices where the difference between the next one is larger than epsilon...
    # jump_idx = []
    # jump_xValues = []
    # jump_yValues = []
    # tmp = X_Values[0]
    # for idx, x in enumerate(X_Values):
    #     print(idx, x)
    #     if idx > 0:
    #         if abs(Y_Values[idx]-Y_Values[idx-1]) > 1:
    #             print('jump candidate')
    #             jump_idx.append(idx)
    #             jump_xValues.append(x)
    #             jump_yValues.append(Y_Values[idx])
    #
    #
    #
    #
    #
    #
    #
    # print("Jump Indices", jump_idx)
    # print("Jump X-values:", jump_xValues)
    # print("Jump Y-values:", jump_yValues)
    #
    # y_plotValues = [Y_Values[0]]
    # x_plotValues = [X_Values[0]]
    # # y_plotValues.extend(jump_yValues)
    # for i in jump_idx:
    #     y_plotValues.extend([Y_Values[i-1], Y_Values[i]])
    #     x_plotValues.extend([X_Values[i-1], X_Values[i]])
    #
    #
    # y_plotValues.append(Y_Values[-1])
    # # x_plotValues = [X_Values[0]]
    # # x_plotValues.extend(jump_xValues)
    # x_plotValues.append(X_Values[-1])
    #
    #
    # print("y_plotValues:", y_plotValues)
    # print("x_plotValues:", x_plotValues)
    
    
    
    
    # Y_Values[np.diff(y) >= 0.5] = np.nan
    
    
    #get values bigger than jump position
    # gamma = infty
    # x_rest = X_Values[X_Values>x_plotValues[1]]
    # Y_Values = np.array(Y_Values)  #convert the np array
    # y_rest = Y_Values[X_Values>x_plotValues[1]]
    #
    #
    # # gamma = 0
    # x_rest = X_Values[X_Values>x_plotValues[3]]
    # Y_Values = np.array(Y_Values)  #convert the np array
    # y_rest = Y_Values[X_Values>x_plotValues[3]]
    
    # gamma between
    # Y_Values = np.array(Y_Values)  #convert the np array
    # X_Values = np.array(X_Values)  #convert the np array
    #
    # x_one = X_Values[X_Values>x_plotValues[3]]
    # # ax.scatter(X_Values, Y_Values)
    # y_rest = Y_Values[X_Values>x_plotValues[3]]
    # ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135])
    #
    #
    #
    
    
    # y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]]
    # print('X_Values:', X_Values)
    # print('Y_Values:', Y_Values)
    # print('x_rest:', x_rest)
    # print('y_rest:', y_rest)
    # print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
    
    
    
    
    # --- Convert to numpy array
    Y_Values = np.array(Y_Values)
    X_Values = np.array(X_Values)
    
    
    # Curvature_alphaNeg1 = np.array(Curvature_alphaNeg1)
    # Curvature_alphaNeg05 = np.array(Curvature_alphaNeg05)
    # Curvature_alphaNeg025 = np.array(Curvature_alphaNeg025)
    # Curvature_alphaNeg075 = np.array(Curvature_alphaNeg075)
    # Curvature_alpha3 = np.array(Curvature_alpha3)
    # Curvature_alphaNeg0 = np.array(Curvature_alpha0)
    # Curvature_alphaNeg0125 = np.array(Curvature_alphaNeg0125)
    # Curvature_alphaNeg5 = np.array(Curvature_alphaNeg5)
    
    Curvature_alphaNeg05 = np.array(Curvature_alphaNeg05)
    Curvature_alphaNeg055 = np.array(Curvature_alphaNeg055)
    Curvature_alphaNeg06 = np.array(Curvature_alphaNeg06)
    Curvature_alphaNeg065 = np.array(Curvature_alphaNeg065)
    Curvature_alphaNeg07 = np.array(Curvature_alphaNeg07)
    Curvature_alphaNeg075 = np.array(Curvature_alphaNeg075)
    Curvature_alphaNeg08 = np.array(Curvature_alphaNeg08)
    Curvature_alphaNeg085 = np.array(Curvature_alphaNeg085)
    Curvature_alphaNeg09 = np.array(Curvature_alphaNeg09)
    Curvature_alphaNeg095 = np.array(Curvature_alphaNeg095)
    Curvature_alphaNeg1 = np.array(Curvature_alphaNeg1)
    
    
    
    
    # ---------------- Create Plot -------------------
    
    # mpl.rcParams['text.usetex'] = True
    # mpl.rcParams["font.family"] = "serif"
    # mpl.rcParams["font.size"] = "9"
    # Styling
    plt.style.use("seaborn-darkgrid")
    plt.style.use("seaborn-whitegrid")
    plt.style.use("seaborn")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # plt.style.use("seaborn-paper")
    
    # plt.style.use('ggplot')
    # plt.rcParams["font.family"] = "Avenir"
    # plt.rcParams["font.size"] = 16
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    # plt.style.use("seaborn-darkgrid")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    mpl.rcParams['text.usetex'] = True
    mpl.rcParams["font.family"] = "serif"
    
    mpl.rcParams["font.size"] = "10"
    # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5
    # mpl.rcParams['xtick.bottom'] = True
    # mpl.rcParams['ticks'] = True
    mpl.rcParams['xtick.bottom'] = True
    mpl.rcParams['xtick.major.size'] = 3
    mpl.rcParams['xtick.minor.size'] = 1.5
    mpl.rcParams['xtick.major.width'] = 0.75
    mpl.rcParams['ytick.left'] = True
    mpl.rcParams['ytick.major.size'] = 3
    mpl.rcParams['ytick.minor.size'] = 1.5
    mpl.rcParams['ytick.major.width'] = 0.75
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    mpl.rcParams.update({'font.size': 10})
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    ### ADJUST GRID:
    mpl.rcParams['axes.labelpad'] = 5
    mpl.rcParams['grid.linewidth'] = 0.25
    mpl.rcParams['grid.alpha'] = 0.9 # 0.75
    mpl.rcParams['grid.linestyle'] = '-'
    mpl.rcParams['grid.color']   = 'gray'#'black'
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    
    
    #---- Scale Figure apropriately to fit tex-File Width
    # width = 452.9679
    
    # width as measured in inkscape
    width = 6.28 *0.5
    width = 6.28
    height = width / 1.618
    
    #setup canvas first
    fig = plt.figure()      #main
    # fig, ax = plt.subplots()
    # fig, (ax, ax2) = plt.subplots(ncols=2)
    # fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot
    
    
    # fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97)  #TEST
    
    
    # TEST
    # mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1)
    # fig = plt.figure(figsize=(width+0.1,height+0.1))
    
    
    # mpl.rcParams['figure.figsize'] = (width,height)
    # fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
    # fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
    # fig = plt.figure(figsize=set_size(width))
    # fig = plt.subplots(1, 1, figsize=set_size(width))
    
    # --- To create a figure half the width of your document:#
    # fig = plt.figure(figsize=set_size(width, fraction=0.5))
    
    
    
    #--- You must select the correct size of the plot in advance
    # fig.set_size_inches(3.54,3.54)
    
    # ax = plt.axes((0.15,0.18,0.8,0.8))
    ax = plt.axes((0.15,0.18,0.6,0.6))
    # ax = plt.axes((0.1,0.1,0.5,0.8))
    # ax = plt.axes((0.1,0.1,1,1))
    # ax = plt.axes()
    
    # ax.spines['right'].set_visible(False)
    # ax.spines['left'].set_visible(False)
    # ax.spines['bottom'].set_visible(False)
    # ax.spines['top'].set_visible(False)
    # ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green',
    #                labelrotation=15)
    # ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10)
    # ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10)
    ax.tick_params(axis='x',which='major', direction='out',pad=3)
    ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
    # ax.xaxis.set_major_locator(MultipleLocator(0.05))
    # ax.xaxis.set_minor_locator(MultipleLocator(0.025))
    ax.xaxis.set_major_locator(MultipleLocator(0.1))
    ax.xaxis.set_minor_locator(MultipleLocator(0.05))
    
    #---- print data-types
    print(ax.xaxis.get_major_locator())
    print(ax.xaxis.get_minor_locator())
    print(ax.xaxis.get_major_formatter())
    print(ax.xaxis.get_minor_formatter())
    
    #---- Hide Ticks or Labels
    # ax.yaxis.set_major_locator(plt.NullLocator())
    # ax.xaxis.set_major_formatter(plt.NullFormatter())
    
    #---- Reducing or Increasing the Number of Ticks
    # ax.xaxis.set_major_locator(plt.MaxNLocator(3))
    # ax.yaxis.set_major_locator(plt.MaxNLocator(3))
    
    
    #----- Fancy Tick Formats
    # ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4))
    # ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
    # ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
    
    
    
    
    
    
    
    # --- manually change ticks&labels:
    # ax.set_xticks([0.2,1])
    # ax.set_xticklabels(['pos1','pos2'])
    
    # ax.set_yticks([0, np.pi/8, np.pi/4 ])
    # labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
    # ax.set_yticklabels(labels)
    
    a=ax.yaxis.get_major_locator()
    b=ax.yaxis.get_major_formatter()
    c = ax.get_xticks()
    d = ax.get_xticklabels()
    print('xticks:',c)
    print('xticklabels:',d)
    
    ax.grid(True,which='major',axis='both',alpha=0.3)
    
    
    
    
    
    
    # plt.figure()
    
    # f,ax=plt.subplots(1)
    
    # plt.title(r''+ yName + '-Plot')
    # plt.plot(X_Values, Y_Values,linewidth=2, '.k')
    # plt.plot(X_Values, Y_Values,'.k',markersize=1)
    # plt.plot(X_Values, Y_Values,'.',markersize=0.8)
    
    # plt.plot(X_Values, Y_Values)
    
    # ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
    
    
    
    # Gamma = '0'
    # ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b')
    #
    # ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b')
    #
    # ax.plot(x_rest, y_rest, 'b')
    
    
    # Gamma between
    
    # x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093]
    
    # ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b')
    # ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b')
    
    # ax.plot([[0,0.13606060606060608], [0, 0]] , 'b')
    # ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b')
    
    # jump_xValues[0]
    
    
    
    # --- leave out jumps:
    # ax.scatter(X_Values, Y_Values)
    
    ax.set_xlabel(r"volume fraction $\theta$")
    ax.set_ylabel(r"Curvature $\kappa$")
    
    
    if Jumps:
    
        # --- leave out jumps:
        if gamma == 'infinity':
            ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue')
            ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
    
    
    
    
    
        # Plot every other line.. not the jumps...
    
        if gamma == '0':
            tmp = 1
            for idx, x in enumerate(x_plotValues):
                if idx > 0 and tmp == 1:
                    # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] )
                    ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue', zorder=2)
                    tmp = 0
                else:
                    tmp = 1
    
        # plt.plot([x_plotValues[0],x_plotValues[1]] ,[y_plotValues[0],y_plotValues[1]] )
        # plt.plot([x_plotValues[2],x_plotValues[3]] ,[y_plotValues[2],y_plotValues[3]] )
        # plt.plot([x_plotValues[4],x_plotValues[5]] ,[y_plotValues[4],y_plotValues[5]] )
        # plt.plot([x_plotValues[6],x_plotValues[7]] ,[y_plotValues[6],y_plotValues[7]] )
    
    
        for x in jump_xValues:
            plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1, zorder=1)
            # plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed',  label=r'$\theta_*$')
    
        # plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
    
        # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
        # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
        # plt.legend()
    
    
        # -- SETUP LEGEND
        # ax.legend(prop={'size': 11})
        # ax.legend()
    
        # ------------------ SAVE FIGURE
        # tikzplotlib.save("TesTout.tex")
        # plt.close()
        # mpl.rcParams.update(mpl.rcParamsDefault)
    
        # plt.savefig("graph.pdf",
        #             #This is simple recomendation for publication plots
        #             dpi=1000,
        #             # Plot will be occupy a maximum of available space
        #             bbox_inches='tight',
        #             )
        # plt.savefig("graph.pdf")
    
    
    
        # ---- ADD additional scatter:
        # ax.scatter(X_Values,Y_Values,s=1,c='black',zorder=4)
    
        # Find transition point
        lastIdx = len(Y_Values)-1
    
        for idx, y in enumerate(Y_Values):
            if idx != lastIdx:
                if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05:
                    transition_point1 = X_Values[idx+1]
                    print('transition point1:', transition_point1 )
                if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01:
                    transition_point2 = X_Values[idx]
                    print('transition point2:', transition_point2 )
                if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01:
                    transition_point3 = X_Values[idx+1]
                    print('transition point3:', transition_point3 )
    
        # Add transition Points:
        if gamma == '0':
            ax.scatter([transition_point1, transition_point2],[np.pi/2,np.pi/2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
                                      edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
    
            ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                               )
    
            ax.text(transition_point2+0.012 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                               )
        else:
            ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
                                      edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
    
            ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                               )
    
            ax.text(transition_point2 +0.011 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                               )
    
            ax.text(transition_point3 +0.009 , 0+0.08, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
                                   )
    
    else:
            # ax.scatter(X_Values,Y_Values,s=1, marker='o', cmap=None, norm=None, facecolor = 'blue',
            #                           # edgecolor = 'none', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l1 = ax.scatter(X_Values,Curvature_alphaNeg5,s=1, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=3)
            # l2 = ax.scatter(X_Values,Curvature_alphaNeg1,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3, label=r"$\theta_\rho = -1.0$")
            # l3 = ax.scatter(X_Values,Curvature_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l4 = ax.scatter(X_Values,Curvature_alphaNeg05,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l5 = ax.scatter(X_Values,Curvature_alphaNeg025,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l6 = ax.scatter(X_Values,Curvature_alphaNeg0125,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l7 = ax.scatter(X_Values,Curvature_alpha0,s=1, marker='o', edgecolor = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=0.75, linewidths=None, zorder=4)
            # l8 = ax.scatter(X_Values,Curvature_alpha3,s=1, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=4)
            # # # l4 = ax.scatter(X_Values,Curvature_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3)
    
            # l1 = ax.scatter(X_Values,Curvature_alphaNeg5,s=0.25, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=3)
            # l2 = ax.scatter(X_Values,Curvature_alphaNeg1,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3, label=r"$\theta_\rho = -1.0$")
            # l3 = ax.scatter(X_Values,Curvature_alphaNeg075,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l4 = ax.scatter(X_Values,Curvature_alphaNeg05,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l5 = ax.scatter(X_Values,Curvature_alphaNeg025,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l6 = ax.scatter(X_Values,Curvature_alphaNeg0125,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l7 = ax.scatter(X_Values,Curvature_alpha0,s=0.25,  color = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=4)
            # l8 = ax.scatter(X_Values,Curvature_alpha3,s=0.25, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=4)
    
            # l1 = ax.scatter(X_Values,Curvature_alphaNeg5,s=0.25, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=3)
            # l2 = ax.scatter(X_Values,Curvature_alphaNeg1,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3, label=r"$\theta_\rho = -1.0$")
            # l3 = ax.scatter(X_Values,Curvature_alphaNeg075,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l4 = ax.scatter(X_Values,Curvature_alphaNeg05,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l5 = ax.scatter(X_Values,Curvature_alphaNeg025,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l6 = ax.scatter(X_Values,Curvature_alphaNeg0125,s=0.25, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
            # l7 = ax.scatter(X_Values,Curvature_alpha0,s=0.25,  color = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=4)
            # # l8 = ax.scatter(X_Values,Curvature_alpha3,s=0.25, marker='o',  cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=4)
            #
    
    
            l1 = ax.plot(X_Values,Curvature_alphaNeg05, color='blue', linewidth=1.5, zorder=3, label=r"$\theta_\rho=-0.5$")
            l2 = ax.plot(X_Values,Curvature_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$")
            l3 = ax.plot(X_Values,Curvature_alphaNeg06,color='orangered', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.6$")
            l4 = ax.plot(X_Values,Curvature_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$")
            l5 = ax.plot(X_Values,Curvature_alphaNeg07,color='orange', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.7$")
            l6 = ax.plot(X_Values,Curvature_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$")
            l7 = ax.plot(X_Values,Curvature_alphaNeg08, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.8$")
            l8 = ax.plot(X_Values,Curvature_alphaNeg085, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.85$")
            l9 = ax.plot(X_Values,Curvature_alphaNeg09, color='teal',linestyle = '--', linewidth=1.5 ,  zorder=3, label=r"$\theta_\rho=-0.9$")
            l10 = ax.plot(X_Values,Curvature_alphaNeg095, linewidth=1.5,linestyle = '--' ,  zorder=3, label=r"$\theta_\rho=-0.95$")
            l11 = ax.plot(X_Values,Curvature_alphaNeg1, color='red', linewidth=1.5 ,zorder=1, label=r"$\theta_\rho=-1.0$")
    
    
            legend = ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0], l9[0], l10[0], l11[0]],
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
                      # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -  \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = -  \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = -  \frac{1}{8}$" , r"$\theta_\rho = 0$"],
                      loc='upper left',
    
                      bbox_to_anchor=(1,1.02),
                      frameon = True)
    
            frame = legend.get_frame()
            frame.set_edgecolor('gray')
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
            # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = 3.0$"]
            # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8  ])
            # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$']
            # ax.set_yticklabels(labels)
            # ax.set_yticks([1.570786327, np.pi/2 ])
            # labels = [r'$\pi/2-0.0005 $' , r'$\pi/2$']
            # ax.set_yticklabels(labels)
    
            # lgnd = ax.legend(handles=[l2,l3,l4, l5, l6, l7],
            #           labels= [ r"$\theta_\rho = -1.0$",r"$\theta_\rho = -0.75$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = -0.125$",  r"$\theta_\rho = 0$" ],
            #           loc='upper left',
            #           # fontsize=10,
            #           # scatterpoints=1,
            #           bbox_to_anchor=(1,1))
    
            # lgnd = ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7, l8],
            #           labels= [r"$\theta_\rho = -5.0$",  r"$\theta_\rho = -1.0$",r"$\theta_\rho = -0.75$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = -0.125$",  r"$\theta_\rho = 0$",    r"$\theta_\rho = 3.0$"  ],
            #           loc='upper left',
            #           # fontsize=10,
            #           # scatterpoints=1,
            #           bbox_to_anchor=(1,1))
    
            # lgnd.legendHandles[0]._sizes = [10]
            # lgnd.legendHandles[1]._sizes = [10]
            # lgnd.legendHandles[2]._sizes = [10]
            # lgnd.legendHandles[3]._sizes = [10]
            # lgnd.legendHandles[4]._sizes = [10]
            # lgnd.legendHandles[5]._sizes = [10]
            # lgnd.legendHandles[6]._sizes = [10]
            # lgnd.legendHandles[7]._sizes = [10]
            # lgnd.legendHandles[8]._sizes = [10]
            # lgnd.legendHandles[9]._sizes = [10]
            # lgnd.legendHandles[10]._sizes = [10]
    
    
            # fig.legend([l1, l2, l3, l4],     # The line objects
            #            labels=line_labels,   # The labels for each line
            #            # loc="upper center",   # Position of legend
            #            loc='upperleft', bbox_to_anchor=(1,1),
            #            borderaxespad=0.15    # Small spacing around legend box
            #            # title="Legend Title"  # Title for the legend
            #            )
    
    
    
    fig.set_size_inches(width, height)
    fig.savefig('Plot-Curvature-Theta.pdf')
    
    
    
    
    # tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm')
    
    # tikz_save('fig.tikz',
    #            figureheight = '\\figureheight',
    #            figurewidth = '\\figurewidth')
    
    # ----------------------------------------
    
    
    plt.show()
    # #---------------------------------------------------------------