Skip to content
Snippets Groups Projects
1-ParameterFamily_G+_Flat_v2.py 27.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    import numpy as np
    import matplotlib.pyplot as plt
    import sympy as sym
    import math
    import os
    import subprocess
    import fileinput
    import re
    import matlab.engine
    import sys
    from ClassifyMin import *
    from HelperFunctions import *
    # from CellScript import *
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.cm as cm
    from vtk.util import numpy_support
    from pyevtk.hl import gridToVTK
    import time
    import matplotlib.ticker as ticker
    
    import matplotlib as mpl
    from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
    import pandas as pd
    
    import seaborn as sns
    import matplotlib.colors as mcolors
    
    from chart_studio import plotly
    import plotly.graph_objs as go
    import plotly.express as px
    import plotly.colors
    # from matplotlib import rc
    # rc('text', usetex=True) # Use LaTeX font
    #
    # import seaborn as sns
    # sns.set(color_codes=True)
    
    
    def show(fig):
        import io
        import plotly.io as pio
        from PIL import Image
        buf = io.BytesIO()
        pio.write_image(fig, buf)
        img = Image.open(buf)
        img.show()
    
    
    
    
    def add_arrow(line, position=None, direction='right', size=15, color=None):
        """
        add an arrow to a line.
    
        line:       Line2D object
        position:   x-position of the arrow. If None, mean of xdata is taken
        direction:  'left' or 'right'
        size:       size of the arrow in fontsize points
        color:      if None, line color is taken.
        """
        if color is None:
            color = line.get_color()
    
        xdata = line.get_xdata()
        ydata = line.get_ydata()
    
        if position is None:
            position = xdata.mean()
        # find closest index
        start_ind = np.argmin(np.absolute(xdata - position))
        if direction == 'right':
            end_ind = start_ind + 1
        else:
            end_ind = start_ind - 1
    
        line.axes.annotate('',
            xytext=(xdata[start_ind], ydata[start_ind]),
            xy=(xdata[end_ind], ydata[end_ind]),
            arrowprops=dict(arrowstyle="->", color=color),
            size=size
        )
    
    
    # set the colormap and centre the colorbar
    class MidpointNormalize(mcolors.Normalize):
    	"""
    	Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value)
    
    	e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100))
    	"""
    	def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
    		self.midpoint = midpoint
    		mcolors.Normalize.__init__(self, vmin, vmax, clip)
    
    	def __call__(self, value, clip=None):
    		# I'm ignoring masked values and all kinds of edge cases to make a
    		# simple example...
    		x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
    		return np.ma.masked_array(np.interp(value, x, y), np.isnan(value))
    
    
    
    def set_size(width, fraction=1):
        """Set figure dimensions to avoid scaling in LaTeX.
    
        Parameters
        ----------
        width: float
                Document textwidth or columnwidth in pts
        fraction: float, optional
                Fraction of the width which you wish the figure to occupy
    
        Returns
        -------
        fig_dim: tuple
                Dimensions of figure in inches
        """
        # Width of figure (in pts)
        fig_width_pt = width * fraction
    
        # Convert from pt to inches
        inches_per_pt = 1 / 72.27
    
        # Golden ratio to set aesthetic figure height
        # https://disq.us/p/2940ij3
        golden_ratio = (5**.5 - 1) / 2
    
        # Figure width in inches
        fig_width_in = fig_width_pt * inches_per_pt
        # Figure height in inches
        fig_height_in = fig_width_in * golden_ratio
    
        fig_dim = (fig_width_in, fig_height_in)
    
        return fig_dim
    
    
    
    def format_func(value, tick_number):
        # find number of multiples of pi/2
        # N = int(np.round(2 * value / np.pi))
        # if N == 0:
        #     return "0"
        # elif N == 1:
        #     return r"$\pi/2$"
        # elif N == -1:
        #     return r"$-\pi/2$"
        # elif N == 2:
        #     return r"$\pi$"
        # elif N % 2 > 0:
        #     return r"${0}\pi/2$".format(N)
        # else:
        #     return r"${0}\pi$".format(N // 2)
        ##find number of multiples of pi/2
        N = int(np.round(4 * value / np.pi))
        if N == 0:
            return "0"
        elif N == 1:
            return r"$\pi/4$"
        elif N == -1:
            return r"$-\pi/4$"
        elif N == 2:
            return r"$\pi/2$"
        elif N == -2:
            return r"$-\pi/2$"
        elif N % 2 > 0:
            return r"${0}\pi/2$".format(N)
        else:
            return r"${0}\pi$".format(N // 2)
    
    
    
    def find_nearest(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return array[idx]
    
    
    def find_nearestIdx(array, value):
        array = np.asarray(array)
        idx = (np.abs(array - value)).argmin()
        return idx
    
    
    
    def energy(a1,a2,q1,q2,q12,q3,b1,b2):
    
    
        a = np.array([a1,a2])
        b = np.array([b1,b2])
        H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
        A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
    
    
        tmp = H.dot(a)
    
        # print('H',H)
        # print('A',A)
        # print('b',b)
        # print('a',a)
        # print('tmp',tmp)
    
        tmp = (1/2)*a.dot(tmp)
        # print('tmp',tmp)
    
        tmp2 = A.dot(b)
        # print('tmp2',tmp2)
        tmp2 = 2*a.dot(tmp2)
    
        # print('tmp2',tmp2)
        energy = tmp - tmp2
        # print('energy',energy)
    
    
        # energy_axial1.append(energy_1)
    
        return energy
    
    
    
    # def energy(a1,a2,q1,q2,q12,q3,b1,b2):
    #
    #
    #     b = np.array([b1,b2])
    #     H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
    #     A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
    #
    #
    #     tmp = H.dot(a)
    #
    #     print('H',H)
    #     print('A',A)
    #     print('b',b)
    #     print('a',a)
    #     print('tmp',tmp)
    #
    #     tmp = (1/2)*a.dot(tmp)
    #     print('tmp',tmp)
    #
    #     tmp2 = A.dot(b)
    #     print('tmp2',tmp2)
    #     tmp2 = 2*a.dot(tmp2)
    #
    #     print('tmp2',tmp2)
    #     energy = tmp - tmp2
    #     print('energy',energy)
    #
    #
    #     # energy_axial1.append(energy_1)
    #
    #     return energy
    #
    
    
    
    
    
    ################################################################################################################
    ################################################################################################################
    ################################################################################################################
    
    InputFile  = "/inputs/computeMuGamma.parset"
    OutputFile = "/outputs/outputMuGamma.txt"
    # --------- Run  from src folder:
    path_parent = os.path.dirname(os.getcwd())
    os.chdir(path_parent)
    path = os.getcwd()
    print(path)
    InputFilePath = os.getcwd()+InputFile
    OutputFilePath = os.getcwd()+OutputFile
    print("InputFilepath: ", InputFilePath)
    print("OutputFilepath: ", OutputFilePath)
    print("Path: ", path)
    
    print('---- Input parameters: -----')
    
    # q1=1;
    # q2=2;
    # q12=1/2;
    # q3=((4*q1*q2)**0.5-q12)/2;
    # # H=[2*q1,q12+2*q3;q12+2*q3,2*q2];
    #
    # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
    # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
    # abar = np.array([q12+2*q3, 2*q2])
    # abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar
    #
    # print('abar:',abar)
    #
    # b = np.linalg.lstsq(A, abar)[0]
    # print('b',b)
    #
    #
    # # print('abar:',np.shape(abar))
    # # print('np.transpose(abar):',np.shape(np.transpose(abar)))
    # sstar = (1/(q1+q2))*abar.dot(A.dot(b))
    # # sstar = (1/(q1+q2))*abar.dot(tmp)
    # print('sstar', sstar)
    # abarperp= np.array([abar[1],-abar[0]])
    # print('abarperp:',abarperp)
    
    
    # -------------------------- Input Parameters --------------------
    
    mu1 = 1.0
    rho1 = 1.0
    alpha = 5.0
    theta = 1.0/2
    # theta= 0.1
    beta = 5.0
    
    
    
    
    # mu1 = 1.0
    # rho1 = 1.0
    # alpha = -0.75
    # theta = 1.0/2
    # # theta= 0.1
    # beta = 5.0
    
    
    # mu1 = 1.0
    # rho1 = 1.0
    # alpha = 2.0
    # theta = 1.0/2
    # # theta= 0.1
    # beta = 5.0
    
    
    #Figure3:
    # mu1 = 1.0
    # rho1 = 1.0
    # alpha = 2.0
    # theta = 1.0/8
    # # theta= 0.1
    # beta = 2.0
    
    
    # alpha= -5
    
    
    #set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
    gamma = '0'
    # gamma = 'infinity'
    
    
    lambda1 = 0.0
    
    
    print('---- Input parameters: -----')
    print('mu1: ', mu1)
    print('rho1: ', rho1)
    # print('alpha: ', alpha)
    print('beta: ', beta)
    # print('theta: ', theta)
    print('gamma:', gamma)
    
    print('lambda1: ', lambda1)
    print('----------------------------')
    # ----------------------------------------------------------------
    print('----------------------------')
    
    # ----------------------------------------------------------------
    
    
    
    
    
    
    q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
    q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
    q12 = 0.0
    q3 = GetMuGamma(beta, theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
    b1 = prestrain_b1(rho1,beta, alpha, theta )
    b2 = prestrain_b2(rho1,beta, alpha, theta )
    
    
    ## ---- 1-ParameterFamilyCase:
    # q1=1;
    # q2=2;
    # q12=1/2;
    # q3=((4*q1*q2)**0.5-q12)/2;
    # # H=[2*q1,q12+2*q3;q12+2*q3,2*q2];
    # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
    # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
    # abar = np.array([q12+2*q3, 2*q2])
    # abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar
    # print('abar:',abar)
    # b = np.linalg.lstsq(A, abar)[0]
    # print('b',b)
    # b1=b[0]
    # b2=b[1]
    ## ---------------
    
    
    
    
    
    ########################################
    
    # 1-ParameterFamilyCase:
    
    q1=1;
    q2=2;
    q12=1/2;
    q3=((4*q1*q2)**0.5-q12)/2;
    # H=[2*q1,q12+2*q3;q12+2*q3,2*q2];
    
    H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
    A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
    abar = np.array([q12+2*q3, 2*q2])
    abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar
    
    print('abar:',abar)
    
    b = np.linalg.lstsq(A, abar)[0]
    print('b',b)
    
    b1=b[0]
    b2=b[1]
    
    
    ##----------------------
    print('q1 = ', q1)
    print('q2 = ', q2)
    print('q3 = ', q3)
    print('q12 = ', q12)
    print('b1 = ', b1)
    print('b2 = ', b2)
    ##--------------
    
    
    # print('abar:',np.shape(abar))
    # print('np.transpose(abar):',np.shape(np.transpose(abar)))
    sstar = (1/(q1+q2))*abar.dot(A.dot(b))
    # sstar = (1/(q1+q2))*abar.dot(tmp)
    print('sstar', sstar)
    abarperp= np.array([abar[1],-abar[0]])
    print('abarperp:',abarperp)
    
    print('sstar*abar:', sstar*abar)
    # print('np.dot(sstar*abar):', np.dot(sstar*abar))
    print('----------------------------')
    
    
    N=1000;
    N=10;
    scale_domain = 5
    translate_startpoint = -1.8
    T_line = np.linspace(-sstar*(q12+2*q3)/(2*q2)*scale_domain + translate_startpoint, sstar*(2*q2)/(q12+2*q3)*scale_domain , num=N)
    line_values = []
    for t in T_line :
        print('sstar*abar+t*abarperp', sstar*abar+t*abarperp)
        line_values.append(sstar*abar+t*abarperp)
    
    
    
    
    T = np.linspace(-sstar*(q12+2*q3)/(2*q2), sstar*(2*q2)/(q12+2*q3), num=N)
    
    # T = np.linspace(-2,2, num=N)
    # print('T:', T)
    
    print('T.min():', T.min())
    print('T.max():', T.max())
    
    kappas = []
    alphas = []
    # G.append(float(s[0]))
    
    G_container = []
    abar_container = []
    
    test = sstar*abar
    
    
    abar_tmp = abar
    
    for t in T :
        abar_current = sstar*abar+t*abarperp;
        abar_current[abar_current < 1e-10] = 0   # Projection onto x-y-axis!!
        print('abar_current', abar_current)
        G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ]
        G_container.append(G)
        abar_container.append(abar_current)
        e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5]
        kappa = abar_current[0]+abar_current[1]
        alpha = math.atan2(e[1], e[0])
    	# print('angle current:', alpha)
        kappas.append(kappa)
        alphas.append(alpha)
    
    
    alphas = np.array(alphas)
    kappas = np.array(kappas)
    
    # print('G_container', G_container)
    G = np.array(G_container)
    abar = np.array(abar_container)
    
    print('G', G)
    print('abar', abar)
    print('abar.shape',abar.shape)
    
    
    
    
    
    
    
    
    
    
    ######################################
    
    
    
    num_Points = 400
    num_Points = 200
    # num_Points = 20
    
    
    # Creating dataset
    x = np.linspace(-5,5,num_Points)
    y = np.linspace(-5,5,num_Points)
    
    x = np.linspace(-20,20,num_Points)
    y = np.linspace(-20,20,num_Points)
    
    
    x = np.linspace(-2,2,num_Points)
    y = np.linspace(-2,2,num_Points)
    
    # x = np.linspace(-10,10,num_Points)
    # y = np.linspace(-10,10,num_Points)
    
    # x = np.linspace(-60,60,num_Points)
    # y = np.linspace(-60,60,num_Points)
    #
    #
    # x = np.linspace(-40,40,num_Points)
    # y = np.linspace(-40,40,num_Points)
    
    
    a1, a2 = np.meshgrid(x,y)
    
    # geyser = sns.load_dataset("geyser")
    # print('type of geyser:', type(geyser))
    # print('geyser:',geyser)
    
    ContourRange=20
    
    x_in = np.linspace(-ContourRange,ContourRange,num_Points)
    y_in = np.linspace(-ContourRange,ContourRange,num_Points)
    a1_in, a2_in = np.meshgrid(x_in,y_in)
    
    print('a1:', a1)
    print('a2:',a2 )
    
    print('a1.shape', a1.shape)
    
    #-- FILTER OUT VALUES for G+ :
    
    # tmp1 = a1[np.where(a1*a2 >= 0)]
    # tmp2 = a2[np.where(a1*a2 >= 0)]
    #
    # np.take(a, np.where(a>100)[0], axis=0)
    # tmp1 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0)
    # tmp2 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0)
    # tmp2 = a2[np.where(a1*a2 >= 0)]
    
    tmp1 = a1[a1*a2 >= 0]
    tmp2 = a2[a1*a2 >= 0]
    tmp1 = tmp1.reshape(-1,5)
    tmp2 = tmp2.reshape(-1,5)
    
    
    # tmp1_pos = a1[np.where(a1*a2 >= 0) ]
    # tmp2_pos = a2[np.where(a1*a2 >= 0) ]
    # tmp1_pos = tmp1_pos[np.where(tmp1_pos  >= 0)]
    # tmp2_pos = tmp2_pos[np.where(tmp2_pos  >= 0)]
    #
    # tmp1_neg = a1[a1*a2 >= 0 ]
    # tmp2_neg = a2[a1*a2 >= 0 ]
    # tmp1_neg = tmp1_neg[tmp1_neg  < 0]
    # tmp2_neg = tmp2_neg[tmp2_neg  < 0]
    # a1 = tmp1
    # a2 = tmp2
    #
    # a1 = a1.reshape(-1,5)
    # a2 = a2.reshape(-1,5)
    #
    # tmp1_pos = tmp1_pos.reshape(-1,5)
    # tmp2_pos = tmp2_pos.reshape(-1,5)
    # tmp1_neg = tmp1_neg.reshape(-1,5)
    # tmp2_neg = tmp2_neg.reshape(-1,5)
    
    
    print('a1:', a1)
    print('a2:',a2 )
    print('a1.shape', a1.shape)
    
    
    
    
    
    energyVec = np.vectorize(energy)
    
    # Z = energyVec(np.array([a1,a2]),q1,q2,q12,q3,b1,b2)
    Z = energyVec(a1,a2,q1,q2,q12,q3,b1,b2)
    
    Z_in = energyVec(a1_in,a2_in,q1,q2,q12,q3,b1,b2)
    
    
    
    
    print('Z:', Z)
    
    print('any', np.any(Z<0))
    
    #
    
    
    # negZ_a1 = a1[np.where(Z<0)]
    # negZ_a2 = a2[np.where(Z<0)]
    # negativeValues = Z[np.where(Z<0)]
    # print('negativeValues:',negativeValues)
    #
    # print('negZ_a1',negZ_a1)
    # print('negZ_a2',negZ_a2)
    #
    #
    # negZ_a1 = negZ_a1.reshape(-1,5)
    # negZ_a2 = negZ_a2.reshape(-1,5)
    # negativeValues = negativeValues.reshape(-1,5)
    #
    # Z_pos =  energyVec(tmp1_pos,tmp2_pos,q1,q2,q12,q3,b1,b2)
    # Z_neg = energyVec(tmp1_neg,tmp2_neg,q1,q2,q12,q3,b1,b2)
    
    
    
    
    
    # print('Test energy:' , energy(np.array([1,1]),q1,q2,q12,q3,b1,b2))
    
    
    
    
    # print('Z_pos.shape', Z_pos.shape)
    
    
    
    
    
    
    
    ## -- PLOT :
    
    # mpl.rcParams['text.usetex'] = True
    # mpl.rcParams["font.family"] = "serif"
    # mpl.rcParams["font.size"] = "9"
    #
    # label_size = 8
    # mpl.rcParams['xtick.labelsize'] = label_size
    # mpl.rcParams['ytick.labelsize'] = label_size
    #
    # plt.style.use('seaborn')
    # # plt.style.use('seaborn-whitegrid')
    # # sns.set()
    # # plt.style.use('seaborn-whitegrid')
    #
    # label_size = 9
    # mpl.rcParams['xtick.labelsize'] = label_size
    # mpl.rcParams['ytick.labelsize'] = label_size
    
    # # plt.style.use("seaborn-darkgrid")
    # plt.style.use("seaborn-whitegrid")
    plt.style.use("seaborn")
    # plt.style.use("seaborn-paper")
    # plt.style.use('ggplot')
    # plt.rcParams["font.family"] = "Avenir"
    # plt.rcParams["font.size"] = 16
    
    # plt.style.use("seaborn-darkgrid")
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    mpl.rcParams['text.usetex'] = True
    mpl.rcParams["font.family"] = "serif"
    
    mpl.rcParams["font.size"] = "10"
    # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5
    # mpl.rcParams['xtick.bottom'] = True
    # mpl.rcParams['ticks'] = True
    mpl.rcParams['xtick.bottom'] = True
    mpl.rcParams['xtick.major.size'] = 3
    mpl.rcParams['xtick.minor.size'] = 1.5
    mpl.rcParams['xtick.major.width'] = 0.75
    mpl.rcParams['ytick.left'] = True
    mpl.rcParams['ytick.major.size'] = 3
    mpl.rcParams['ytick.minor.size'] = 1.5
    mpl.rcParams['ytick.major.width'] = 0.75
    
    mpl.rcParams.update({'font.size': 10})
    mpl.rcParams['axes.labelpad'] = 3.0
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    width = 6.28 *0.5
    # width = 6.28 *0.33
    # width = 6.28
    height = width #/ 1.618
    
    # width = 452.9579/2
    # size= set_size(width, fraction=0.5)
    # print('set_size(width, fraction=0.5)', set_size(width, fraction=1))
    # print('size[0]',size[0])
    
    f_size = 10
    # fig= plt.figure()
    fig, ax = plt.subplots()
    # fig.set_size_inches(width, height)
    # fig.set_size_inches(set_size(width, fraction=0.5))
    # ax = plt.axes(projection ='3d', adjustable='box')
    # ax = plt.axes((0.17,0.21 ,0.75,0.75))
    
    # ax = plt.axes((0.17,0.23 ,0.7,0.7))
    # ax = plt.axes((0.17,0.23 ,1.0,1.0))
    # ax=plt.axes()
    # ax = plt.axes((0.15,0.18,0.8,0.8))
    # ax.tick_params(axis='x',which='major', direction='out',pad=5)
    # ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
    # ax.xaxis.set_major_locator(MultipleLocator(0.1))
    # ax.xaxis.set_minor_locator(MultipleLocator(0.05))
    # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
    # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
    # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
    # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
    # ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
    ax.grid(True,which='major',axis='both',alpha=0.3)
    
    # Substract constant:
    # c = (b1**2)*q1+b1*b2*q12+(b2**2)*q2
    # Z = Z-c
    #
    # print('Value of c:', c)
    
    
    
    print('Z.min()', Z.min())
    print('Z.max()', Z.max())
    norm=mcolors.Normalize(Z.min(),Z.max())
    # facecolors=cm.brg(norm)
    
    
    
    
    cmap=mpl.cm.RdBu_r
    cmap=mpl.cm.viridis_r
    # cmap=mpl.cm.bwr
    cmap=mpl.cm.coolwarm
    # cmap=mpl.cm.gnuplot
    cmap=mpl.cm.magma_r
    # cmap=mpl.cm.inferno_r
    # cmap=mpl.cm.plasma
    # cmap=mpl.cm.plasma_r
    # cmap=mpl.cm.cividis_r
    # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"])
    # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","orange"])
    
    # cmap = mpl.colors.LinearSegmentedColormap.from_list("", [(0,"red"), (.1,"violet"), (.5, "blue"), (1.0, "green")])
    # make a colormap that has land and ocean clearly delineated and of the
    # same length (256 + 256)
    #
    # colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256))
    # colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256))
    # all_colors = np.vstack((colors_undersea, colors_land))
    # # cmap = mcolors.LinearSegmentedColormap.from_list(
    # #     'terrain_map', all_colors)
    
    
    # cmap = px.colors.sequential.agsunset
    # cmap = plotly.colors.PLOTLY_SCALES["Viridis"]
    
    
    
    
    # cmap = cm.brg(Z)
    divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max())
    divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=(Z.max()+Z.min())/2, vmax=Z.max())
    # divnorm=mcolors.TwoSlopeNorm(vmin=-500, vcenter=0, vmax=Z.max())
    
    # divnorm=mcolors.TwoSlopeNorm(vmin=-10, vcenter=0. ,vmax=10)
    # divnorm=mcolors.TwoSlopeNorm(vmin=-10, vcenter=0., vmax=Z.max())
    
    # divnorm=mcolors.LogNorm(vmin=Z.min(),  vmax=Z.max())  #Test LogNorm
    
    # cmap = cm.brg(divnorm(Z))
    
    # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', norm = norm,
    #                   cmap='coolwarm', alpha=0.6)
    
    # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower',
    #                   cmap='coolwarm', alpha=0.6)
    # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower',
    #                   cmap=cmap, alpha=0.6)
    
    # divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max())
    # plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower',
    #                   cmap=cmap, alpha=0.6)
    
    # I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm,
    #                   cmap=cmap, alpha=0.6)
    # plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm,
    #                   cmap=cmap, alpha=0.9)
    # plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm,
    #                   cmap=cmap, alpha=0.6)
    
    
    # I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower',
                      # cmap=cmap, alpha=0.6)
    
    
    # I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = mcolors.CenteredNorm(),
    #                   cmap=cmap, alpha=0.6)
    
    
    
    # COLORBAR :
    # cbar = plt.colorbar()
    # cbar.ax.tick_params(labelsize=f_size)
    # fig.colorbar(I)
    
    
    
    ##----- ADD RECTANGLE TO COVER QUADRANT :
    # epsilon = 0.4
    epsilon = 0.001
    # ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow
    # ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow
    # ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow
    
    fillcolor = 'royalblue'
    # ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=0.7, color=fillcolor, zorder=4)#yellow
    # ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=0.7, color=fillcolor, zorder=4)#yellow
    # ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=1.0, color=fillcolor, zorder=4)#yellow
    # ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=1.0, color=fillcolor, zorder=4)#yellow
    
    
    ## FILL
    ax.fill_between([x.min(), 0-epsilon], y.min(), 0-epsilon, alpha=.25, color=fillcolor, zorder=4)#yellow
    ax.fill_between([0+epsilon, x.max()], 0+epsilon, y.max(), alpha=.25, color=fillcolor, zorder=4)#yellow
    
    
    ax.text(1,1, r"$\mathcal{G}^+_{\mathbf{R}^2}$", color='royalblue', size=15)
    
    # ax.text(0.25,0.25, r"$\mathcal{S}$", color='darkorange', size=15)
    
    # PLOT 1-PARAMETER FAMILY
    
    print('abar:', abar)
    print('abar[0,:]:', abar[0,:])
    print('abar[1,:]:', abar[1,:])
    
    line = ax.plot(abar[:,0],abar[:,1], linewidth=1.5, color='darkorange', linestyle='-', zorder=4)
    
    # plt.arrow(x=1, y=0, dx=0.5, dy=0, )
    # ax.arrow(1, 0, 0.5, 0, head_width=0.05, head_length=0.1, fc='k', ec='k', zorder=5)
    # plt.arrow(1, 0, 0.8, 0,  shape='full', lw=0, length_includes_head=True, head_width=.15, zorder=5, color='purple')
    
    
    ## PLOT ARROW:
    # plt.arrow(1, 0, 0.5, 0,  shape='full', lw=0, length_includes_head=True, head_width=.20, zorder=5, color='darkorange')
    # plt.arrow(0, 1.8, 0, -0.8,  shape='full', lw=0, length_includes_head=True, head_width=.20, zorder=5, color='darkorange')
    
    
    # plt.arrow(0, 1.8, 0, -0.8, lw=0,  head_width=.12, zorder=5, color='darkorange')
    # plt.arrow(0, 2, 0, -0.5,  shape='full', lw=0, length_includes_head=True, head_width=.12, zorder=5, color='darkorange')
    # add_arrow(line, color='darkorange')
    
    
    
    
    # ax.plot_surface(a1,a2, Z, cmap=cm.coolwarm,
    #                        linewidth=0, antialiased=False)
    
    
    
    # ax.plot(theta_rho, energy_axial1, 'royalblue', zorder=3, label=r"axialMin1")
    # ax.plot(theta_rho, energy_axial2, 'forestgreen', zorder=3, label=r"axialMin2")
    # ax.plot(-1.0*alphas, kappas, 'red', zorder=3, )
    
    
    # print('test:',test)
    # ax.scatter(test[0],test[1])
    # ax.arrow(test[0],test[1],abarperp[0],abarperp[1])
    line_values= np.array(line_values)
    
    ax.plot(line_values[:,0],line_values[:,1],'k--', linewidth=1,color='orange',alpha=0.5)
    
    # lg = ax.legend(bbox_to_anchor=(0.0, 0.75), loc='upper left')
    
    
    
    ### PLot x and y- Axes
    ax.plot(ax.get_xlim(),[0,0],'k--', linewidth=0.5)
    ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5)
    
    
    
    ax.set_xlabel(r"$a_1$", fontsize=f_size ,labelpad=0)
    
    ax.set_ylabel(r"$a_2$", fontsize=f_size ,labelpad=0, rotation=0)
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # ax.set_ylabel(r"energy")
    ax.tick_params(axis='both', which='major', labelsize=f_size)
    ax.tick_params(axis='both', which='minor', labelsize=f_size)
    
    
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    # ax.set_xticks([-np.pi/2, -np.pi/4  ,0,  np.pi/4,  np.pi/2 ])
    # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']
    # ax.set_yticklabels(labels)
    
    print('x.max()',x.max())
    print('y.max()',y.max())
    ax.set_xlim(x.min(),x.max())
    ax.set_xlim(y.min(),y.max())
    
    
    plt.subplots_adjust(bottom=0.15)
    plt.subplots_adjust(left=0.2)
    
    
    Klaus Böhnlein's avatar
    Klaus Böhnlein committed
    
    
    # ax.legend(loc='upper right')
    
    
    
    fig.set_size_inches(width, height)
    # fig.set_size_inches(set_size(width, fraction=0.33))
    fig.savefig('Energy_ContourG+_Flat.pdf')
    
    plt.show()
    
    
    #
    #
    #
    # # Curve parametrised by \theta_rho = alpha in parameter space
    # N=100;
    # theta_rho = np.linspace(1, 3, num=N)
    # print('theta_rho:', theta_rho)
    #
    #
    # theta_values = []
    #
    #
    # for t in theta_rho:
    #
    #         s = (1.0/10.0)*t+0.1
    #         theta_values.append(s)
    #
    #
    #
    #
    #
    # theta_rho = np.array(theta_rho)
    # theta_values = np.array(theta_values)
    #
    # betas_ = 2.0
    #
    
    # alphas, betas, thetas = np.meshgrid(theta_rho, betas_, theta_values, indexing='ij')
    #
    #
    # harmonicMeanVec = np.vectorize(harmonicMean)
    # arithmeticMeanVec = np.vectorize(arithmeticMean)
    # prestrain_b1Vec = np.vectorize(prestrain_b1)
    # prestrain_b2Vec = np.vectorize(prestrain_b2)
    #
    # GetMuGammaVec = np.vectorize(GetMuGamma)
    # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
    #
    # q1_vec = harmonicMeanVec(mu1, betas, thetas)
    # q2_vec = arithmeticMeanVec(mu1, betas, thetas)
    #
    # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas)
    # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas)
    
    # special case: q12 == 0!! .. braucht eigentlich nur b1 & b2 ...
    
    # print('type b1_values:', type(b1_values))
    
    
    
    # print('size(q1)',q1.shape)
    #
    #
    # energy_axial1 = []
    # energy_axial2 = []
    #
    # # for b1 in b1_values:
    # for i in range(len(theta_rho)):
    #     print('index i:', i)
    #
    #     print('theta_rho[i]',theta_rho[i])