Skip to content
Snippets Groups Projects
HelperFunctions.py 12.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • import numpy as np
    import matplotlib.pyplot as plt
    import sympy as sym
    import math
    import os
    import subprocess
    import fileinput
    import re
    import matlab.engine
    import time
    
    # from ClassifyMin import *
    from ClassifyMin_New import *
    
    # from scipy.io import loadmat #not Needed anymore?
    import codecs
    import sys
    
    
    def ReadEffectiveQuantities(QFilePath = os.path.dirname(os.getcwd()) + '/outputs/QMatrix.txt', BFilePath = os.path.dirname(os.getcwd())+ '/outputs/BMatrix.txt'):
        # Read Output Matrices (effective quantities)
        # From Cell-Problem output Files : ../outputs/Qmatrix.txt , ../outputs/Bmatrix.txt
        # -- Read Matrix Qhom
        X = []
        # with codecs.open(path + '/outputs/QMatrix.txt', encoding='utf-8-sig') as f:
        with codecs.open(QFilePath, encoding='utf-8-sig') as f:
            for line in f:
                s = line.split()
                X.append([float(s[i]) for i in range(len(s))])
        Q = np.array([[X[0][2], X[1][2], X[2][2]],
                      [X[3][2], X[4][2], X[5][2]],
                      [X[6][2], X[7][2], X[8][2]] ])
    
        # -- Read Beff (as Vector)
        X = []
        # with codecs.open(path + '/outputs/BMatrix.txt', encoding='utf-8-sig') as f:
        with codecs.open(BFilePath, encoding='utf-8-sig') as f:
            for line in f:
                s = line.split()
                X.append([float(s[i]) for i in range(len(s))])
        B = np.array([X[0][2], X[1][2], X[2][2]])
        return Q, B
    
    
    
    
    def SetParametersCellProblem(alpha,beta,theta,gamma,mu1,rho1,lambda1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset"):
    
        with open(InputFilePath, 'r') as file:
            filedata = file.read()
        filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
        filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
        filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
        filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
        filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
        filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
    
        filedata = re.sub('(?m)^lambda1=.*','lambda1='+str(lambda1),filedata)
    
        f = open(InputFilePath,'w')
        f.write(filedata)
        f.close()
    
    #TODO combine these...
    
    def SetParametersComputeMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset"):
        with open(InputFilePath, 'r') as file:
            filedata = file.read()
        filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
        filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
        filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
        filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
        filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
        f = open(InputFilePath,'w')
        f.write(filedata)
        f.close()
    
    
    
    
    
    def RunCellProblem(alpha,beta,theta,gamma,mu1,rho1,lambda1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset"):
    
            # with open(InputFilePath, 'r') as file:
            #     filedata = file.read()
            # filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
            # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
            # filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
            # filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
            # filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
            # filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
            # f = open(InputFilePath,'w')
            # f.write(filedata)
            # f.close()
    
            SetParametersCellProblem(alpha,beta,theta,gamma,mu1,rho1,lambda1, InputFilePath)
    
            # --- Run Cell-Problem
            # Optional: Check Time
            # t = time.time()
            subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
                                                 capture_output=True, text=True)
            # print('elapsed time:', time.time() - t)
            # --------------------------------------------------------------------------------------
    
    
    
    
    def GetCellOutput(alpha,beta,theta,gamma,mu1,rho1,lambda1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset",
    
                    OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ):
    
            RunCellProblem(alpha,beta,theta,gamma,mu1,rho1,lambda1, InputFilePath)
    
            print('Read effective quantities...')
            Q, B = ReadEffectiveQuantities()
    
    # unabhängig von alpha...
    
    def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset",
                    OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ):
    
        # ------------------------------------ get mu_gamma ------------------------------
        # ---Scenario 1.1: extreme regimes
        if gamma == '0':
    
            # print('extreme regime: gamma = 0')
    
            mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
    
            # print("mu_gamma:", mu_gamma)
    
        elif gamma == 'infinity':
    
            # print('extreme regime: gamma = infinity')
    
            mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta)   # = q1
    
            # print("mu_gamma:", mu_gamma)
    
        else:
            # --- Scenario 1.2:  compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
            # print("Run computeMuGamma for Gamma = ", gamma)
    
    
            SetParametersComputeMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath)
            # with open(InputFilePath, 'r') as file:
            #     filedata = file.read()
            # filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
            # # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
            # filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
            # filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
            # filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
            # filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
            # f = open(InputFilePath,'w')
            # f.write(filedata)
            # f.close()
    
            # --- Run Cell-Problem
    
            # Check Time
            # t = time.time()
            # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
            #                                      capture_output=True, text=True)
            # --- Run Cell-Problem_muGama   -> faster
            # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
            #                                              capture_output=True, text=True)
            # --- Run Compute_muGamma (2D Problem much much faster)
    
            subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
                                                                 capture_output=True, text=True)
            # print('elapsed time:', time.time() - t)
    
            #Extract mu_gamma from Output-File                                           TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
            with open(OutputFilePath, 'r') as file:
                output = file.read()
            tmp = re.search(r'(?m)^mu_gamma=.*',output).group()                           # Not necessary for Intention of Program t output Minimizer etc.....
            s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
            mu_gamma = float(s[0])
            # print("mu_gamma:", mu_gammaValue)
        # --------------------------------------------------------------------------------------
        return mu_gamma
    
    
    
    
    
    
    
    def Compare_Classification(alpha,beta,theta,gamma,mu1,rho1,lambda1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset"):
    
            # ---------------------------------------------------------------
            # Comparison of the analytical Classification 'ClassifyMin'
            # and the symbolic Minimizatio + Classification 'symMinimization'
            # ----------------------------------------------------------------
            comparison_successful = True
            eps = 1e-8
    
            # 1. Substitute Input-Parameters for the Cell-Problem
            with open(InputFilePath, 'r') as file:
                filedata = file.read()
            filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
            filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
            filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
            filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
            filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
            filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
    
            filedata = re.sub('(?m)^lambda1=.*','lambda1='+str(lambda1),filedata)
    
            f = open(InputFilePath,'w')
            f.write(filedata)
            f.close()
            # 2. --- Run Cell-Problem
            print('Run Cell-Problem ...')
            # Optional: Check Time
            # t = time.time()
            subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
                                                 capture_output=True, text=True)
    
    
            # 3. --- Run Matlab symbolic minimization program: 'symMinimization'
            eng = matlab.engine.start_matlab()
            # s = eng.genpath(path + '/Matlab-Programs')
    
            s = eng.genpath(os.path.dirname(os.getcwd()))
    
            eng.addpath(s, nargout=0)
            # print('current Matlab folder:', eng.pwd(nargout=1))
            eng.cd('Matlab-Programs', nargout=0)  #switch to Matlab-Programs folder
            # print('current Matlab folder:', eng.pwd(nargout=1))
            Inp = False
            print('Run symbolic Minimization...')
            G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp, nargout=4)  #Name of program:symMinimization
            # G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp,path + "/outputs", nargout=4)  #Optional: add Path
            G = np.asarray(G) #cast Matlab Outout to numpy array
            # --- print Output ---
            print('Minimizer G:')
            print(G)
            print('angle:', angle)
            print('type:', type )
            print('curvature:', kappa)
    
            # 4. --- Read the effective quantities (output values of the Cell-Problem)
            # Read Output Matrices (effective quantities)
            print('Read effective quantities...')
            Q, B = ReadEffectiveQuantities()
            print('Q:', Q)
            print('B:', B)
            q1 = Q[0][0]
            q2 = Q[1][1]
            q3 = Q[2][2]
            q12 = Q[0][1]
            b1 = B[0]
            b2 = B[1]
            b3 = B[2]
    
            print("q1:", q1)
            print("q2:", q2)
            print("q3:", q3)
            print("q12:", q12)
            print("b1:", b1)
            print("b2:", b2)
            print("b3:", b3)
    
    
            # --- Check Assumptions:
            # Assumption of Classification-Lemma1.6:  [b3 == 0] & [Q orthotropic]
            # Check if b3 is close to zero
            assert (b3 < eps), "ClassifyMin only defined for b3 == 0 !"
    
            # Check if Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0
            assert(Q[2][0] < eps and Q[0][2] < eps and Q[1][2] < eps and Q[2][1] < eps), "Q is not orthotropic !"
    
            # 5. --- Get output from the analytical Classification 'ClassifyMin'
            G_ana, angle_ana, type_ana, kappa_ana = classifyMin(q1, q2, q3, q12, b1, b2)
    
            print('Minimizer G_ana:')
            print(G_ana)
            print('angle_ana:', angle_ana)
            print('type_ana:', type_ana )
            print('curvature_ana:', kappa_ana)
    
    
            # 6. Compare
            # print('DifferenceMatrix:', G_ana - G )
            # print('MinimizerError (FrobeniusNorm):', np.linalg.norm(G_ana - G , 'fro') )
    
            if np.linalg.norm(G_ana - G , 'fro') > eps :
                comparison_successful = False
                print('Difference between Minimizers is too large !')
            if type != type_ana :
                comparison_successful = False
                print('Difference in type !')
            if abs(angle-angle_ana) > eps :
                comparison_successful = False
                print('Difference in angle is too large!')
            if abs(kappa-kappa_ana) > eps :
                comparison_successful = False
                print('Difference in curvature is too large!')
    
    
            if comparison_successful:
                print('Comparison successful')
    
            else:
                print('Comparison unsuccessful')
    
    
            return comparison_successful
    
    
    
    
    # ----------------------------------------------------------------------------------------------------------------------------