Newer
Older
function [G, angle, Type, kappa] = symMinimization(print_Input,print_statPoint,print_Output,make_FunctionPlot, InputPath) %(Q_hom,B_eff)
syms v1 v2 q1 q2 q3 q12 b1 b2 b3
% -------- Options ----------
% % print_Input = false; %effective quantities
% print_Input = true;
% % print_statPoint = false;
% print_statPoint = true;
% print_Minimizer = true;
% % make_FunctionPlot = false;
% make_FunctionPlot = true;
print_Uniqueness = false;
check_StationaryPoints = false; % could be added to Input-Parameters..
compare_with_Classification = false; %maybe added later ---
%fprintf('Functions to be minimized:')
f_plus(v1,v2,q1,q2,q3,q12,b1,b2,b3) = q1*v1^4 + q2*v2^4+2*q3*v1^2*v2^2-2*(q1*b1*v1^2+ q2*b2*v2^2+sqrt(2)*q3*b3*v1*v2)...
+ q12*(v1^2*v2^2-b2*v1^2-b1*v2^2+b1*b2);
f_minus(v1,v2,q1,q2,q3,q12,b1,b2,b3) = q1*v1^4 + q2*v2^4+2*q3*v1^2*v2^2+2*(q1*b1*v1^2+ q2*b2*v2^2+sqrt(2)*q3*b3*v1*v2)...
+ q12*(v1^2*v2^2+b2*v1^2+b1*v2^2+b1*b2);
% ---- Fix parameters
% Epsilon used:
epsilon = 1e-8;
if ~exist('InputPath','var')
% third parameter does not exist, so default it to something
absPath = "/home/klaus/Desktop/DUNE/dune-microstructure/outputs";
end
% 1. Import effective quantities from CellSolver-Code:
%read as sparse Matrix...
try %absolutePath
Qmat = spconvert(load(absPath + '' + "/QMatrix.txt"));
Bmat = spconvert(load(absPath + '' + "/BMatrix.txt"));
% fprintf('Use absolute Path')
catch ME % use relativePath
Qmat = spconvert(load('../outputs/QMatrix.txt'));
Bmat = spconvert(load('../outputs/BMatrix.txt'));
% fprintf('Use relative Path')
end
%convert to full matrix...
Qmat = full(Qmat);
Bmat = full(Bmat);
% --- TODO CHECK: assert if Q is orthotropic ??? check ifq13=q31=q23=q32= 0 ?
if print_Input
fprintf('effective quadratic form:')
Qmat
fprintf('effective prestrain')
Bmat
% check if Q is (close to..) symmetric
% könnte Anti-symmetric part berechnen und schauen dass dieser klein?
% Test: issymmetric(Qmat) does not work for float matrices?
% symmetric part 0.5*(Qmat+Qmat')
% anti-symmetric part 0.5*(Qmat-Qmat')
if norm(0.5*(Qmat-Qmat'),'fro') < 1e-8
fprintf('Qmat (close to) symmetric \n')
norm(0.5*(Qmat-Qmat'),'fro') % TEST
else
fprintf('Qmat not symmetric \n')
end
% Check if B_eff is diagonal this is equivalent to b3 == 0
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
fprintf('B_eff is diagonal (b3 == 0) \n')
else
fprintf('B_eff is NOT diagonal (b3 != 0) \n')
end
end
% CAST VALUES TO SYM FIRST? This is done anyway..
% % Substitute effective quantitites
f_plus = subs(f_plus,{q1, q2, q3, q12, b1, b2, b3}, {Qmat(1,1), Qmat(2,2), Qmat(3,3), Qmat(1,2), ...
Bmat(1), Bmat(2), Bmat(3)});
f_minus = subs(f_minus,{q1, q2, q3, q12, b1, b2, b3}, {Qmat(1,1), Qmat(2,2), Qmat(3,3), Qmat(1,2), ...
Bmat(1), Bmat(2), Bmat(3)});
% Compute the Gradients
df_plusx = diff(f_plus,v1);
df_plusy = diff(f_plus,v2);
df_minusx = diff(f_minus,v1);
df_minusy = diff(f_minus,v2);
% Setup Equations Grad(f) = 0
eq1 = df_plusx == 0;
eq2 = df_plusy == 0;
eqns_plus = [eq1, eq2];
eq3 = df_minusx == 0;
eq4 = df_minusy == 0;
eqns_minus = [eq3, eq4];
% ------- Symbolically Solve Equations:
% More robust (works even for values b_3 ~ 1e-08 ):
S_plus = solve(eqns_plus,v1,v2,'MaxDegree' , 5);
S_minus = solve(eqns_minus,v1,v2,'MaxDegree' , 5);
A_plus = S_plus.v1;
B_plus = S_plus.v2;
A_minus = S_minus.v1;
B_minus = S_minus.v2;
if check_StationaryPoints
%---------- TEST if Grad(f) = 0 ---------------------
fprintf('Testing equation grad(f) = 0 with stationary points')
for i = 1:size(A_plus,1)
fprintf('Testing %d.point (f_plus): ',i )
[ double(subs(subs(df_plusx,v1,A_plus(i)),v2,B_plus(i))), double(subs(subs(df_plusy,v1,A_plus(i)),v2,B_plus(i))) ]
end
for i = 1:size(A_minus,1)
fprintf('Testing %d.point (f_minus): ',i )
[double(subs(subs(df_minusx,v1,A_minus(i)),v2,B_minus(i))), double(subs(subs(df_minusy,v1,A_minus(i)),v2,B_minus(i)))]
end
% ------------------------------------
end
% --- Extract only Real-Solutions
% fprintf('real stationary points of f_plus:')
tmp1 = A_plus(imag(double(A_plus))==0 & imag(double(B_plus)) == 0);
tmp2 = B_plus(imag(double(A_plus))==0 & imag(double(B_plus)) == 0);
A_plus = tmp1;
B_plus = tmp2;
SP_plus = [A_plus,B_plus];
% fprintf('real stationary points of f_minus:')
tmp1 = A_minus(imag(double(A_minus))==0 & imag(double(B_minus)) == 0);
tmp2 = B_minus(imag(double(A_minus))==0 & imag(double(B_minus)) == 0);
A_minus = tmp1;
B_minus = tmp2;
SP_minus = [A_minus,B_minus];
% TODO one should use f_plus.subs(A_plus..) to compute function value symbolically?
% in the end only the stationaryPoints are used.. should be ok to compare function values numerically
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
% Determine global Minimizer from stationary points:
% fprintf('function values at stationary points (f_plus):')
T_plus = arrayfun(@(v1,v2) double(f_plus(v1,v2,q1,q2,q3,q12,b1,b2,b3)),A_plus,B_plus,'UniformOutput', false);
T_plus = cell2mat(T_plus);
%Test: use Substitution
% subs(f_plus,{v1, v2}, {A_plus,B_plus})
% fprintf('function values at stationary points (f_minus):')
T_minus = arrayfun(@(v1,v2) double(f_minus(v1,v2,q1,q2,q3,q12,b1,b2,b3)),A_minus,B_minus,'UniformOutput', false);
T_minus = cell2mat(T_minus);
%Test: use Substitution
% T_minus = subs(f_minus,{v1, v2}, {A_minus,B_minus})
% double(T_minus)
if print_statPoint
fprintf('real stationary points of f_plus: ')
% SP_Plus %alternative: output as symbolic (can be unwieldy)
double(SP_plus)
fprintf('real stationary points of f_minus:')
% SP_Minus %alternative: output as symbolic (can be unwieldy)
double(SP_minus)
fprintf('function values at stationary points (f_plus):')
T_plus
fprintf('function values at stationary points (f_minus):')
T_minus
end
% --- Find Stationary Point(s) with minimum Value
[Min_plus,MinIdx_plus] = min(T_plus, [], 'all', 'linear'); %find one min...
[Min_minus,MinIdx_minus] = min(T_minus, [], 'all', 'linear');
% [Min_minus,MinIdx_minus] = min(T_minus) % works with symbolic too
% Compare Minimizers of f_plus & f_minus
[globalMinimizerValue,GlobalIdx] = min([Min_plus,Min_minus]);
if GlobalIdx == 1 %Min_plus % i.e. Global Minimizer is given by f_plus
GlobalMinimizer = SP_plus(MinIdx_plus,:);
sign = 1.0;
elseif GlobalIdx == 2 %Min_minus % i.e. Global Minimizer is given by f_minus
GlobalMinimizer = SP_minus(MinIdx_minus,:);
sign = -1.0;
end
% ------ Check if there are more SP with the same value...
MinIndices_minus = find(T_minus(:) == globalMinimizerValue); % Find indices of All Minima
MinIndices_plus = find(T_plus(:) == globalMinimizerValue); % Find indices of All Minima
numMinSP_minus = size(MinIndices_minus,1); % One of these is always >= 2 due to the structure of the roots..
numMinSP_plus = size(MinIndices_plus,1);
% AllMinSP_minus = SP_minus(MinIndices_minus,:)
% AllMinSP_minus = double(SP_minus(MinIndices_minus,:))
% AllMin = T_minus(MinIndices) %bereits klar dass diese selben funktionswert haben..
Minimizer = sign*(GlobalMinimizer'*GlobalMinimizer); % global minimizing Matrix G*
MinimizerCount = 1;
% different Stationary Points might correspond to the same minimizing
% Matrix G*... check this:
% Compare only with other StationaryPoints/Minimizers
% remove Index of Minimizer
if GlobalIdx == 1
MinIndices_plus = MinIndices_plus(MinIndices_plus~=MinIdx_plus);
elseif GlobalIdx == 2
MinIndices_minus = MinIndices_minus(MinIndices_minus~=MinIdx_minus);
end
MinIndices = cat(1,MinIndices_plus,MinIndices_minus); %[Minimizers-Indices f_plus, Minimizer-Indices f_minus]
for i = 1:(numMinSP_minus+numMinSP_plus-1) % -1: dont count Minimizer itself..
idx = MinIndices(i);
if i > numMinSP_plus
SP = SP_minus(idx,:);
else
SP = SP_plus(idx,:);
end
% SP_value = T_minus(idx) % not needed?
Matrix = sign*(SP'*SP);
if norm(double(Matrix-Minimizer),'fro') < 1e-8 %check is this sufficient here?
% fprintf('both StationaryPoints correspond to the same(Matrix-)Minimizer')
% fprintf('StationaryPoint corresponds to a different (Matrix-)Minimizer')
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
MinimizerCount = MinimizerCount + 1;
end
end
% ----------------------------------------------------------------------------------------------------------------
% Output Uniqueness of Minimizers:
if print_Uniqueness
if MinimizerCount == 1
fprintf('Unique Minimzier')
elseif MinimizerCount == 2
fprintf('Two Minimziers')
else
fprintf('1-Parameter family of Minimziers')
end
end
% --- determine the angle of the Minimizer
% a1 = Minimizer(1,1)
% a2 = Minimizer(2,2)
a1 = double(Minimizer(1,1));
a2 = double(Minimizer(2,2));
% compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e)
e = [sqrt((a1/(a1+a2))), sqrt((a2/(a1+a2)))]; % always positive under sqrt here .. basically takes absolute value here
angle = atan2(e(2), e(1));
% compute curvature kappa
kappa = (a1 + a2);
% % CHeck off diagonal entries:
% sqrt(a1*a2);
% double(Minimizer);
G = double(Minimizer);
% --- "Classification" / Determine the TYPE of Minimizer by using
% the number of solutions (Uniqueness?)
% the angle (axial- or non-axial Minimizer)
% (Alternative compute det[GlobalMinimizer' e1'] where e1 = [1 0] ?)
% Check Uniqueness -- Options: unique/twoMinimizers/1-ParameterFamily
if MinimizerCount == 1
% fprintf('Unique Minimzier')
% Check if Minimizer is axial or non-axial:
if (abs(angle-pi/2) < 1e-8 || abs(angle) < 1e-8) % axial Minimizer
Type = 3;
else % non-axial Minimizer
Type = 1;
end
elseif MinimizerCount == 2
% fprintf('Two Minimziers')
% Check if Minimizer is axial or non-axial:
if (abs(angle-pi/2) < 1e-8 || abs(angle) < 1e-8) % axial Minimizer
Type = 3;
else % non-axial Minimizer
fprintf('ERROR: Two non-axial Minimizers cannot happen!')
end
else
% fprintf('1-Parameter family of Minimziers')
% Check if Minimizer is axial or non-axial:
if (abs(angle-pi/2) < 1e-8 || abs(angle) < 1e-8) % axial Minimizer
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
% fprintf('ERROR: axial Minimizers cannot happen for 1-Parameter Family!')
else % non-axial Minimizer
Type = 2;
end
end
% ------------------------------------------------------------------------------------------------------
if print_Output
fprintf(' --------- Output symMinimization --------')
fprintf('Global Minimizer v: (%d,%d) \n', GlobalMinimizer(1),GlobalMinimizer(2) )
fprintf('Global Minimizer Value f(v): %d \n', sym(globalMinimizerValue) ) %cast to symbolic
% fprintf('Global Minimizer Value : %d', globalMinimizerValue )
fprintf('Global Minimizer G: \n' )
G
fprintf("Angle = %d \n", angle)
fprintf("Curvature = %d \n", kappa)
fprintf("Type = %i \n", Type)
fprintf(' --------- -------------------- --------')
end
if make_FunctionPlot
fsurf(@(x,y) f_plus(x,y,q1,q2,q3,q12,b1,b2,b3)) % Plot functions
hold on
plot3(double(A_plus),double(B_plus),T_plus,'g*')
%Plot GlobalMinimizer:
hold on
plot3(double(GlobalMinimizer(1)),double(GlobalMinimizer(2)),globalMinimizerValue, 'o', 'Color','c')
% view(90,0)
% view(2)
figure
fsurf(@(x,y) f_minus(x,y,q1,q2,q3,q12,b1,b2,b3))
hold on
plot3(double(A_minus),double(B_minus),T_minus,'g*')
hold on
plot3(double(GlobalMinimizer(1)), double(GlobalMinimizer(2)),globalMinimizerValue, 'o', 'Color','c')
end
return
% Write symbolic solution to txt-File in Latex format
% fileID = fopen('txt.txt','w');
% fprintf(fileID,'%s' , latex(S_plus.v1));
% fclose(fileID);