Skip to content
Snippets Groups Projects
ClassifyMin_New.py 13.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    import numpy as np
    import matplotlib.pyplot as plt
    import sympy as sym
    import math
    import os
    import subprocess
    import fileinput
    import re
    import matlab.engine
    import sys
    # print(sys.executable)
    # from subprocess import Popen, PIPE
    
    
    # --------------------------------------------------
    # 'classifyMin' classifies Minimizers by utilizing the result of
    # Lemma1.6
    #
    #
    #
    #
    # 'classifyMin_ana': (Special-Case : Lemma1.4)
    # ..additionally assumes Poisson-ratio=0 => q12==0
    #
    #
    #
    # Output : MinimizingMatrix, Angle, Type, Curvature
    
    
    
    def get_gstar(q1,q2,q12,q3,b1,b2):
    
        # a = np.array([a1,a2])
        b = np.array([b1,b2])
        H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
        A = np.array([[q1,q12/2], [q12/2,q2] ])
        # print('det(H)=', np.linalg.det(H))
        # check if g* is in G^*_R^2
        tmp = A.dot(b)
        ## compute inverse of H :
        inv_H = np.linalg.inv(H)
        g_star = 2*inv_H.dot(tmp)
        # print('g_star=', g_star)
    
        return g_star
    
    
    def determine_b(q1,q2,q12,q3,g_star):
        ##
        # Input: g_star
        # Output : b  such that g_star is minimizer, i.e A*b = (1/2)*H*g_star
        # q1=1;
        # q2=2;
        # q12=1/2;
        # q3=((4*q1*q2)**0.5-q12)/2;
        # H=[2*q1,q12+2*q3;q12+2*q3,2*q2];
        H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
        A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
        abar = np.array([q12+2*q3, 2*q2])
        rhs = (1/2)*H.dot(g_star)
        print('rhs:', rhs)
        b = np.linalg.lstsq(A, rhs)[0]
        print('b',b)
        b1=b[0]
        b2=b[1]
    
        return b
        ## ---------------
    
    
    def get_minimizer(q1,q2,q3,b1,b2):
    
        # In the case if q12 == 0:
        quotient = (q1*q2-q3**2)
        g_star = np.array([(q1*q2*b1-q3*q2*b2)/quotient, (q1*q2*b2-q3*q1*b1)/quotient])
        print('g_star=', g_star)
        return g_star
    
    
    def energy(a1,a2,q1,q2,q12,q3,b1,b2):
    
    
        a = np.array([a1,a2])
        b = np.array([b1,b2])
        H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
        A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
    
    
        tmp = H.dot(a)
    
        # print('H',H)
        # print('A',A)
        # print('b',b)
        # print('a',a)
        # print('tmp',tmp)
    
        tmp = (1/2)*a.dot(tmp)
        # print('tmp',tmp)
    
        tmp2 = A.dot(b)
        # print('tmp2',tmp2)
        tmp2 = 2*a.dot(tmp2)
    
        # print('tmp2',tmp2)
        energy = tmp - tmp2
        # print('energy',energy)
    
    
        # energy_axial1.append(energy_1)
    
        return energy
    
    
    
    
    
    
    
    
    def determinant(q1,q2,q3,q12):                                  # TODO General:Matrix
        return q1*q2 - (q3**2 + 2*q3*q12 + q12**2)
    
    
    
    
    def harmonicMean(mu_1, beta, theta):
        return mu_1*(beta/(theta+((1-theta)*beta)))
    
    
    def arithmeticMean(mu_1, beta, theta):
        return mu_1*((1-theta)+theta*beta)
    
    
    def prestrain_b1(rho_1, beta, alpha, theta):
        return (3.0*rho_1/2.0)*(1-(theta*(1+alpha)))
        # return (3.0*rho_1/2.0)*beta*(1-(theta*(1+alpha)))
    
    
    def prestrain_b2(rho_1, beta, alpha, theta):
        return (3.0*rho_1/(2.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha))
        # return (3.0*rho_1/(4.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha))
    
    
    # Define function to be minimized
    def f(a1, a2, q1, q2, q3, q12, b1, b2):
        A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]])
        B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1])
        a = np.array([a1, a2])
        tmp = np.dot(A, a)
        tmp2 = np.dot(a, tmp)
        tmpB = np.dot(B, a)
        return tmp2 + tmpB + q1*(b1**2) + q2*(b2**2) + q12*b1*b2
    
    # ---- Alternative Version using alpha,beta,theta ,mu_1,rho_1
    def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Output=False):
    
        # Assumption of Classification-Lemma1.6:
        #  1. [b3 == 0]
        #  2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0
        # 3. This additionally assumes that Poisson-Ratio = 0 => q12 == 0
        q12 = 0.0
    
        q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta)
        q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta)
        # print('q1: ', q1)
        # print('q2: ', q2)
        b1 = prestrain_b1(rho_1, beta, alpha,theta)
        b2 = prestrain_b2(rho_1, beta, alpha,theta)
    
        # print('alpha:',alpha)
        # print('beta:',beta)
        # print('theta:',theta)
    
        return classifyMin(q1, q2, q3, q12,  b1, b2,  print_Cases, print_Output)
    
    
    
    # Matrix Version that just gets matrices Q & B
    def classifyMin_mat(Q,B,print_Cases=False, print_Output=False):
        q1 = Q[0][0]
        q2 = Q[1][1]
        q3 = Q[2][2]
        q12 = Q[0][1]
        b1 = B[0]
        b2 = B[1]
        b3 = B[2]
        return classifyMin(q1, q2, q3, q12,  b1, b2,  print_Cases, print_Output)
    
    
    # --------------------------------------------------------------------
    # Classify Type of minimizer  1 = R1 , 2 = R2 , 3 = R3                          # before : destinction between which axis.. (4Types )
    # where
    # R1 : unique local (global) minimizer which is not axial
    # R2 : continuum of local (global) minimizers which are not axial
    # R3 : one or two local (global) minimizers which are axial
    # Partition given by
    # R1 = E1
    # R2 = P1.2
    # R3 = E2 U E3 U P1.1 U P2 U H
    # -------------------------------------------------------------------
    def classifyMin(q1, q2, q3, q12, b1, b2,  print_Cases=False, print_Output=False):   #ClassifyMin_hom?
        # Assumption of Classification-Lemma1.6:
        #  1. [b3 == 0]
        #  2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0
    
        # TODO: check if Q is orthotropic here - assert()
    
    
        if print_Output: print("Run ClassifyMin_NEW...")
        CaseCount = 0
        epsilon = sys.float_info.epsilon #Machine epsilon
        # print('epsilon:',epsilon)
    
        b = np.array([b1,b2])
        H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
        A = np.array([[q1,q12/2], [q12/2,q2] ])
    
        # B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1])
        # A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]])
    
        determinant = np.linalg.det(H)
        # print('determinant:',determinant)
        # determinant = q1*q2 - (q3**2 + 2*q3*q12 + q12**2)
        if print_Cases: print("determinant:", determinant)
    
        # Define values for axial-Solutions (b1*,0) & (0,b2*)
        # b1_star = (2.0*q1*b1 + b2*q12)/(2*q1)
        # b2_star = (2.0*q2*b2 + b1*q12)/(2*q2)
    
        # ------------------------------------ Parabolic Case -----------------------------------
        # if abs(determinant) < epsilon:
        if abs(determinant) < epsilon:
            if print_Cases: print('P : parabolic case (determinant equal zero)')
            print('P : PARABOLIC CASE (determinant equal zero)')
    
        # ------------------------------------ Elliptic Case -----------------------------------
        if determinant >= epsilon:
            if print_Cases: print('E : elliptic case (determinant greater zero)')
    
            g_star = get_gstar(q1,q2,q12,q3,b1,b2)
    
            # a1_star = (b1*(q12**2) + 2*b1*q3*q12 - 4*b1*q1*q2 + 4*b2*q2*q3) / \
            #     (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2)
            # a2_star = (b2*(q12**2) + 2*b2*q3*q12 + 4*b1*q1*q3 - 4*b2*q1*q2) / \
            #     (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2)
            # prod = a1_star*a2_star
    
            prod = g_star[0]*g_star[1]
    
            if prod >= epsilon:
                if print_Cases: print('(E1) - inside Lambda ')
                # a1 = a1_star
                # a2 = a2_star
                # type = 1  # non-axial Minimizer
                # CaseCount += 1
                a1 = g_star[0]
                a2 = g_star[1]
                CaseCount += 1
            if prod < epsilon:   # same as prod = 0 ? or better use <=epsilon ?
                if abs(((b2**2)/q1 - (b1**2)/q2)) < epsilon :
                    print('((b2**2)/q1 - (b1**2)/q2)', ((b2**2)/q1 - (b1**2)/q2))
                    print('two minimizers')
                    a1 = b1
                    a2 = 0.0
                    # type = 3  # 1
                    CaseCount += 1
                else:
                    #compare energy values
                    if energy(b1, 0, q1, q2, q3, q12, b1, b2) > energy(0, b2, q1, q2, q3, q12, b1, b2):
                        a1 = 0
                        a2 = b2
                        CaseCount += 1
                    else :
                        a1 = b1
                        a2 = 0
                        CaseCount += 1
        else :
            # g_star = get_gstar(q1,q2,q12,q3,b1,b2)
            # prod = g_star[0]*g_star[1]
    
            if abs((b2**2)/q1 - (b1**2)/q2) < epsilon :
                print('two minimizers')
                a1 = b1
                a2 = 0.0
                # type = 3  # 1
                CaseCount += 1
            else:
                #compare energy values
                if energy(b1, 0, q1, q2, q3, q12, b1, b2) > energy(0, b2, q1, q2, q3, q12, b1, b2):
                    a1 = 0
                    a2 = b2
                    CaseCount += 1
                else :
                    a1 = b1
                    a2 = 0
                    CaseCount += 1
    
            #
            #     if print_Cases: print('(E2) - on the boundary of Lambda ')
            #     a1 = a1_star
            #     a2 = a2_star
            #     type = 3  # could check which axis: if a1_star or a2_star close to zero.. ?
            #     CaseCount += 1
            #
            # if prod <= -1.0*epsilon:
            #     if print_Cases: print('(E3) - Outside Lambda ')
            #     if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2):
            #         a1 = b1_star
            #         a2 = 0.0
            #         type = 3  # 1
            #         CaseCount += 1
            #     if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2):
            #         a1 = 0
            #         a2 = b2_star
            #         type = 3  # 2
            #         CaseCount += 1
            #
            #     # TODO Problem: angle depends on how you choose... THE angle is not defined for this case
            #     if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2):
            #         # Two Minimizers pick one
            #         a1 = b1_star
            #         a2 = 0.0
            #         type = 3  # 4
            #         CaseCount += 1
    
        # ------------------------------------ Hyperbolic Case -----------------------------------
        # if determinant <= -1.0*epsilon:
        #     if print_Cases: print('H : hyperbolic case (determinant smaller zero)')
        #     # One or two minimizers wich are axial
        #     type = 3 # (always type 3)
        #     if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2):
        #         a1 = b1_star
        #         a2 = 0.0
        #         # type = 3  # 1
        #         CaseCount += 1
        #     if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2):
        #         a1 = 0
        #         a2 = b2_star
        #         # type = 3  # 2
        #         CaseCount += 1
        #     # TODO can add this case to first or second ..
        #     if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2):
        #         # Two Minimizers pick one
        #         a1 = b1_star
        #         a2 = 0.0
        #         # type = 3  # 4
        #         CaseCount += 1
        # ---------------------------------------------------------------------------------------
    
        if (CaseCount > 1):
            print('Error: More than one Case happened!')
    
        # compute a3
        # a3 = math.sqrt(2.0*a1*a2)   # never needed?
    
        # print('a1:', a1)
        # print('a2:', a2)
    
        # compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e)
        # e = [math.sqrt((a1/(a1+a2))), math.sqrt((a2/(a1+a2)))]
        e = [((a1/(a1+a2)))**0.5, ((a2/(a1+a2)))**0.5]
        angle = math.atan2(e[1], e[0])
    
        type = 1 # ToDO..
    
        # compute kappa
        kappa = (a1 + a2)
    
        # Minimizer G
        # Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]],dtype=object)
        Minimizer = np.array([[a1, (a1*a2)**0.5], [(a1*a2)**0.5, a2]],dtype=object)
        # Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]])
    
        # MinimizerVec = np.array([a1, a2],dtype=object)
        MinimizerVec = np.array([a1, a2])
    
        if print_Output:
            print('--- Output ClassifyMin ---')
            print("Minimizing Matrix G:")
            print(Minimizer)
            print("angle = ", angle)
            print("type: ", type)
            print("kappa = ", kappa)
    
        return Minimizer, angle, type, kappa
        # return MinimizerVec, angle, type, kappa    #return Minimizer Vector instead
    # ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    
    
    # ---------------------------------------------- Main ---------------------
    
    # --- Input Parameters ----
    # mu_1 = 1.0
    # rho_1 = 1.0
    # alpha = 9.0
    # beta = 2.0
    # theta = 1.0/8.0
    
    # # define q1, q2 , mu_gamma, q12
    # # 1. read from Cell-Output
    # # 2. define values from analytic formulas (expect for mu_gamma)
    # q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta)
    # q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta)
    # # TEST
    # q12 = 0.0  # (analytical example)
    # # q12 = 12.0  # (analytical example)
    
    # set mu_gamma  to value or read from Cell-Output
    # mu_gamma = q1   # TODO read from Cell-Output
    # b1 = prestrain_b1(rho_1, beta, alpha, theta)
    # b2 = prestrain_b2(rho_1, beta, alpha, theta)
    
    
    # print('---- Input parameters: -----')
    # print('mu_1: ', mu_1)
    # print('rho_1: ', rho_1)
    # print('alpha: ', alpha)
    # print('beta: ', beta)
    # print('theta: ', theta)
    # print("q1: ", q1)
    # print("q2: ", q2)
    # print("mu_gamma: ", mu_gamma)
    # print("q12: ", q12)
    # print("b1: ", b1)
    # print("b2: ", b2)
    # print('----------------------------')
    # # print("machine epsilon", sys.float_info.epsilon)
    #
    #
    # # ------- Options --------
    # print_Cases = True
    # print_Output = True
    
    # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12,  b1, b2, print_Cases, print_Output)
    #
    # G, angle, type, kappa = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output)
    #
    # Out = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output)
    
    # print('TEST:')
    # Out = classifyMin_ana(alpha, beta, theta)
    
    # print('Out[0]', Out[0])
    # print('Out[1]', Out[1])
    # print('Out[2]', Out[2])
    # print('Out[3]', Out[3])
    
    
    # #supress certain Outout..
    # _,_,T,_ = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output)
    # print('Output only type..:', T)
    
    # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2)
    # print("Test", Test)
    
    # -----------------------------------------------------------------------------------------------------------------------------------------------------------------