Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
094f8145
Commit
094f8145
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Add script for energy contours
parent
43fe8338
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/Energy_ContourG+.py
+811
-0
811 additions, 0 deletions
src/Energy_ContourG+.py
with
811 additions
and
0 deletions
src/Energy_ContourG+.py
0 → 100644
+
811
−
0
View file @
094f8145
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
sympy
as
sym
import
math
import
os
import
subprocess
import
fileinput
import
re
import
matlab.engine
import
sys
from
ClassifyMin
import
*
from
HelperFunctions
import
*
# from CellScript import *
from
mpl_toolkits.mplot3d
import
Axes3D
import
matplotlib.cm
as
cm
from
vtk.util
import
numpy_support
from
pyevtk.hl
import
gridToVTK
import
time
import
matplotlib.ticker
as
ticker
import
matplotlib
as
mpl
from
matplotlib.ticker
import
MultipleLocator
,
FormatStrFormatter
,
MaxNLocator
import
pandas
as
pd
import
seaborn
as
sns
import
matplotlib.colors
as
mcolors
# from matplotlib import rc
# rc('text', usetex=True) # Use LaTeX font
#
# import seaborn as sns
# sns.set(color_codes=True)
# set the colormap and centre the colorbar
class
MidpointNormalize
(
mcolors
.
Normalize
):
"""
Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value)
e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100))
"""
def
__init__
(
self
,
vmin
=
None
,
vmax
=
None
,
midpoint
=
None
,
clip
=
False
):
self
.
midpoint
=
midpoint
mcolors
.
Normalize
.
__init__
(
self
,
vmin
,
vmax
,
clip
)
def
__call__
(
self
,
value
,
clip
=
None
):
# I'm ignoring masked values and all kinds of edge cases to make a
# simple example...
x
,
y
=
[
self
.
vmin
,
self
.
midpoint
,
self
.
vmax
],
[
0
,
0.5
,
1
]
return
np
.
ma
.
masked_array
(
np
.
interp
(
value
,
x
,
y
),
np
.
isnan
(
value
))
def
format_func
(
value
,
tick_number
):
# find number of multiples of pi/2
# N = int(np.round(2 * value / np.pi))
# if N == 0:
# return "0"
# elif N == 1:
# return r"$\pi/2$"
# elif N == -1:
# return r"$-\pi/2$"
# elif N == 2:
# return r"$\pi$"
# elif N % 2 > 0:
# return r"${0}\pi/2$".format(N)
# else:
# return r"${0}\pi$".format(N // 2)
##find number of multiples of pi/2
N
=
int
(
np
.
round
(
4
*
value
/
np
.
pi
))
if
N
==
0
:
return
"
0
"
elif
N
==
1
:
return
r
"
$\pi/4$
"
elif
N
==
-
1
:
return
r
"
$-\pi/4$
"
elif
N
==
2
:
return
r
"
$\pi/2$
"
elif
N
==
-
2
:
return
r
"
$-\pi/2$
"
elif
N
%
2
>
0
:
return
r
"
${0}\pi/2$
"
.
format
(
N
)
else
:
return
r
"
${0}\pi$
"
.
format
(
N
//
2
)
def
find_nearest
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
array
[
idx
]
def
find_nearestIdx
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
idx
def
energy
(
a1
,
a2
,
q1
,
q2
,
q12
,
q3
,
b1
,
b2
):
a
=
np
.
array
([
a1
,
a2
])
b
=
np
.
array
([
b1
,
b2
])
H
=
np
.
array
([[
2
*
q1
,
q12
+
2
*
q3
],
[
q12
+
2
*
q3
,
2
*
q2
]
])
A
=
np
.
array
([[
q1
,
1
/
2
*
q12
],
[
1
/
2
*
q12
,
q2
]
])
tmp
=
H
.
dot
(
a
)
# print('H',H)
# print('A',A)
# print('b',b)
# print('a',a)
# print('tmp',tmp)
tmp
=
(
1
/
2
)
*
a
.
dot
(
tmp
)
# print('tmp',tmp)
tmp2
=
A
.
dot
(
b
)
# print('tmp2',tmp2)
tmp2
=
2
*
a
.
dot
(
tmp2
)
# print('tmp2',tmp2)
energy
=
tmp
-
tmp2
# print('energy',energy)
# energy_axial1.append(energy_1)
return
energy
# def energy(a1,a2,q1,q2,q12,q3,b1,b2):
#
#
# b = np.array([b1,b2])
# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
#
#
# tmp = H.dot(a)
#
# print('H',H)
# print('A',A)
# print('b',b)
# print('a',a)
# print('tmp',tmp)
#
# tmp = (1/2)*a.dot(tmp)
# print('tmp',tmp)
#
# tmp2 = A.dot(b)
# print('tmp2',tmp2)
# tmp2 = 2*a.dot(tmp2)
#
# print('tmp2',tmp2)
# energy = tmp - tmp2
# print('energy',energy)
#
#
# # energy_axial1.append(energy_1)
#
# return energy
#
################################################################################################################
################################################################################################################
################################################################################################################
InputFile
=
"
/inputs/computeMuGamma.parset
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
# --------- Run from src folder:
path_parent
=
os
.
path
.
dirname
(
os
.
getcwd
())
os
.
chdir
(
path_parent
)
path
=
os
.
getcwd
()
print
(
path
)
InputFilePath
=
os
.
getcwd
()
+
InputFile
OutputFilePath
=
os
.
getcwd
()
+
OutputFile
print
(
"
InputFilepath:
"
,
InputFilePath
)
print
(
"
OutputFilepath:
"
,
OutputFilePath
)
print
(
"
Path:
"
,
path
)
print
(
'
---- Input parameters: -----
'
)
# q1=1;
# q2=2;
# q12=1/2;
# q3=((4*q1*q2)**0.5-q12)/2;
# # H=[2*q1,q12+2*q3;q12+2*q3,2*q2];
#
# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
# abar = np.array([q12+2*q3, 2*q2])
# abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar
#
# print('abar:',abar)
#
# b = np.linalg.lstsq(A, abar)[0]
# print('b',b)
#
#
# # print('abar:',np.shape(abar))
# # print('np.transpose(abar):',np.shape(np.transpose(abar)))
# sstar = (1/(q1+q2))*abar.dot(A.dot(b))
# # sstar = (1/(q1+q2))*abar.dot(tmp)
# print('sstar', sstar)
# abarperp= np.array([abar[1],-abar[0]])
# print('abarperp:',abarperp)
# -------------------------- Input Parameters --------------------
mu1
=
1.0
rho1
=
1.0
alpha
=
5.0
theta
=
1.0
/
2
# theta= 0.1
beta
=
5.0
# mu1 = 1.0
# rho1 = 1.0
# alpha = 2.0
# theta = 1.0/2
# # theta= 0.1
# beta = 5.0
#Figure3:
mu1
=
1.0
rho1
=
1.0
alpha
=
2.0
theta
=
1.0
/
8
# theta= 0.1
beta
=
2.0
alpha
=
-
5
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
gamma
=
'
0
'
gamma
=
'
infinity
'
lambda1
=
0.0
print
(
'
---- Input parameters: -----
'
)
print
(
'
mu1:
'
,
mu1
)
print
(
'
rho1:
'
,
rho1
)
# print('alpha: ', alpha)
print
(
'
beta:
'
,
beta
)
# print('theta: ', theta)
print
(
'
gamma:
'
,
gamma
)
print
(
'
lambda1:
'
,
lambda1
)
print
(
'
----------------------------
'
)
# ----------------------------------------------------------------
print
(
'
----------------------------
'
)
# ----------------------------------------------------------------
q1
=
(
1.0
/
6.0
)
*
harmonicMean
(
mu1
,
beta
,
theta
)
q2
=
(
1.0
/
6.0
)
*
arithmeticMean
(
mu1
,
beta
,
theta
)
q12
=
0.0
q3
=
GetMuGamma
(
beta
,
theta
,
gamma
,
mu1
,
rho1
,
InputFilePath
,
OutputFilePath
)
b1
=
prestrain_b1
(
rho1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho1
,
beta
,
alpha
,
theta
)
print
(
'
q1 =
'
,
q1
)
print
(
'
q2 =
'
,
q2
)
print
(
'
q3 =
'
,
q3
)
print
(
'
q12 =
'
,
q12
)
print
(
'
b1 =
'
,
b1
)
print
(
'
b2 =
'
,
b2
)
num_Points
=
400
# Creating dataset
x
=
np
.
linspace
(
-
5
,
5
,
num_Points
)
y
=
np
.
linspace
(
-
5
,
5
,
num_Points
)
x
=
np
.
linspace
(
-
20
,
20
,
num_Points
)
y
=
np
.
linspace
(
-
20
,
20
,
num_Points
)
x
=
np
.
linspace
(
-
10
,
10
,
num_Points
)
y
=
np
.
linspace
(
-
10
,
10
,
num_Points
)
x
=
np
.
linspace
(
-
60
,
60
,
num_Points
)
y
=
np
.
linspace
(
-
60
,
60
,
num_Points
)
x
=
np
.
linspace
(
-
40
,
40
,
num_Points
)
y
=
np
.
linspace
(
-
40
,
40
,
num_Points
)
a1
,
a2
=
np
.
meshgrid
(
x
,
y
)
print
(
'
a1:
'
,
a1
)
print
(
'
a2:
'
,
a2
)
print
(
'
a1.shape
'
,
a1
.
shape
)
#-- FILTER OUT VALUES for G+ :
# tmp1 = a1[np.where(a1*a2 >= 0)]
# tmp2 = a2[np.where(a1*a2 >= 0)]
# np.take(a, np.where(a>100)[0], axis=0)
# tmp1 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0)
# tmp2 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0)
# tmp2 = a2[np.where(a1*a2 >= 0)]
# tmp1 = a1[a1*a2 >= 0]
# tmp2 = a2[a1*a2 >= 0]
# tmp1_pos = a1[np.where(a1*a2 >= 0) ]
# tmp2_pos = a2[np.where(a1*a2 >= 0) ]
# tmp1_pos = tmp1_pos[np.where(tmp1_pos >= 0)]
# tmp2_pos = tmp2_pos[np.where(tmp2_pos >= 0)]
# tmp1_neg = a1[a1*a2 >= 0 ]
# tmp2_neg = a2[a1*a2 >= 0 ]
# tmp1_neg = tmp1_neg[tmp1_neg < 0]
# tmp2_neg = tmp2_neg[tmp2_neg < 0]
# a1 = tmp1
# a2 = tmp2
#
# a1 = a1.reshape(-1,5)
# a2 = a2.reshape(-1,5)
# tmp1_pos = tmp1_pos.reshape(-1,5)
# tmp2_pos = tmp2_pos.reshape(-1,5)
# tmp1_neg = tmp1_neg.reshape(-1,5)
# tmp2_neg = tmp2_neg.reshape(-1,5)
print
(
'
a1:
'
,
a1
)
print
(
'
a2:
'
,
a2
)
print
(
'
a1.shape
'
,
a1
.
shape
)
energyVec
=
np
.
vectorize
(
energy
)
# Z = energyVec(np.array([a1,a2]),q1,q2,q12,q3,b1,b2)
Z
=
energyVec
(
a1
,
a2
,
q1
,
q2
,
q12
,
q3
,
b1
,
b2
)
print
(
'
Z:
'
,
Z
)
print
(
'
any
'
,
np
.
any
(
Z
<
0
))
#
# negativeValues = Z[np.where(Z<0)]
# print('negativeValues:',negativeValues)
#
# Z_pos = energyVec(tmp1_pos,tmp2_pos,q1,q2,q12,q3,b1,b2)
# Z_neg = energyVec(tmp1_neg,tmp2_neg,q1,q2,q12,q3,b1,b2)
# print('Test energy:' , energy(np.array([1,1]),q1,q2,q12,q3,b1,b2))
# print('Z_pos.shape', Z_pos.shape)
## -- PLOT :
mpl
.
rcParams
[
'
text.usetex
'
]
=
True
mpl
.
rcParams
[
"
font.family
"
]
=
"
serif
"
mpl
.
rcParams
[
"
font.size
"
]
=
"
9
"
label_size
=
8
mpl
.
rcParams
[
'
xtick.labelsize
'
]
=
label_size
mpl
.
rcParams
[
'
ytick.labelsize
'
]
=
label_size
# plt.style.use('seaborn')
plt
.
style
.
use
(
'
seaborn-whitegrid
'
)
# sns.set()
# plt.style.use('seaborn-whitegrid')
label_size
=
9
mpl
.
rcParams
[
'
xtick.labelsize
'
]
=
label_size
mpl
.
rcParams
[
'
ytick.labelsize
'
]
=
label_size
width
=
6.28
*
0.5
# width = 6.28
height
=
width
/
1.618
fig
=
plt
.
figure
()
# ax = plt.axes(projection ='3d', adjustable='box')
ax
=
plt
.
axes
((
0.17
,
0.21
,
0.75
,
0.75
))
# ax = plt.axes((0.15,0.18,0.8,0.8))
# ax.tick_params(axis='x',which='major', direction='out',pad=5)
# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
# ax.xaxis.set_major_locator(MultipleLocator(0.1))
# ax.xaxis.set_minor_locator(MultipleLocator(0.05))
# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
# ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
ax
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
# colorfunction=(B*kappa)
# print('colofunction',colorfunction)
#translate Data
# Z = Z - (Z.max()-Z.min())/2
# Z = Z - 50
# Z = Z - 500
#
# Z = Z.T
# Substract constant:
c
=
(
b1
**
2
)
*
q1
+
b1
*
b2
*
q12
+
(
b2
**
2
)
*
q2
Z
=
Z
-
c
print
(
'
Value of c:
'
,
c
)
print
(
'
Z.min()
'
,
Z
.
min
())
print
(
'
Z.max()
'
,
Z
.
max
())
norm
=
mcolors
.
Normalize
(
Z
.
min
(),
Z
.
max
())
# facecolors=cm.brg(norm)
print
(
'
norm:
'
,
norm
)
print
(
'
type of norm
'
,
type
(
norm
))
print
(
'
norm(0):
'
,
norm
(
0
))
print
(
'
norm(Z):
'
,
norm
(
Z
))
# ax.plot(theta_rho, theta_values, 'royalblue', zorder=3, )
# ax.scatter(a1,a2, s=0.5)
# ax.scatter(tmp1_pos,tmp2_pos, s=0.5)
# ax.scatter(tmp1_neg,tmp2_neg, s=0.5)
# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=100 )
# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=20 )
# sns.kdeplot(np.array([a1, a2, Z]))
# sns.kdeplot(tmp1_pos,tmp2_pos,Z_pos)
# levels = [-5.0, -4, -3, 0.0, 1.5, 2.5, 3.5]
# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, corner_mask=True,levels=levels)
# CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot(norm(Z)), corner_mask=True)
# CS = ax.contour(a1, a2, Z, cm.brg(norm(Z)), levels=20)
# CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot, levels=20)
CS
=
ax
.
contour
(
a1
,
a2
,
Z
,
colors
=
'
k
'
,
levels
=
14
,
linewidths
=
(
0.5
,))
# CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.5,))
# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, extend='both', levels=50)
# CS = ax.contourf(a1, a2, Z,10, colors='k', extend='both', levels=50)
# CS = ax.contourf(a1, a2, Z,10, colors='k')
#
# # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, levels=10 )
# # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, corner_mask=True)
#
# CS = ax.contour(a1, a2, Z,10, colors = 'k')
ax
.
clabel
(
CS
,
inline
=
True
,
fontsize
=
4
)
# cmap = cm.brg(norm(Z))
#
# C_map = cm.inferno(norm(Z))
# ax.imshow(Z, cmap=C_map, extent=[-20, 20, -20, 20], origin='lower', alpha=0.5)
# ax.imshow(norm(Z), extent=[-20, 20, -20, 20], origin='lower',
# cmap='bwr', alpha=0.8)
# ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', vmin=Z.min(), vmax=Z.max(),
# cmap='bwr', alpha=0.6)
# ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', norm = norm,
# cmap='coolwarm', alpha=0.6)
cmap
=
mpl
.
cm
.
RdBu_r
# cmap=mpl.cm.viridis_r
cmap
=
mpl
.
cm
.
bwr
# cmap=mpl.cm.coolwarm
cmap
=
mpl
.
cm
.
gnuplot
# cmap = cm.brg(Z)
divnorm
=
mcolors
.
TwoSlopeNorm
(
vmin
=
Z
.
min
(),
vcenter
=
0.
,
vmax
=
Z
.
max
())
# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', norm = norm,
# cmap='coolwarm', alpha=0.6)
# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower',
# cmap='coolwarm', alpha=0.6)
# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower',
# cmap=cmap, alpha=0.6)
# divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max())
# plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower',
# cmap=cmap, alpha=0.6)
plt
.
imshow
(
Z
,
extent
=
[
x
.
min
(),
x
.
max
(),
y
.
min
(),
y
.
max
()],
origin
=
'
lower
'
,
norm
=
divnorm
,
cmap
=
cmap
,
alpha
=
0.6
)
# COLORBAR :
# cbar = plt.colorbar()
# cbar.ax.tick_params(labelsize=8)
##----- ADD RECTANGLE TO COVER QUADRANT :
epsilon
=
0.4
# ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow
# ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow
# ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow
ax
.
fill_between
([
0
+
epsilon
,
x
.
max
()],
y
.
min
(),
0
-
epsilon
,
alpha
=
0.7
,
color
=
'
gray
'
,
zorder
=
5
)
#yellow
ax
.
fill_between
([
x
.
min
(),
0
-
epsilon
],
0
+
epsilon
,
y
.
max
(),
alpha
=
0.7
,
color
=
'
gray
'
,
zorder
=
5
)
#yellow
# ax.plot_surface(a1,a2, Z, cmap=cm.coolwarm,
# linewidth=0, antialiased=False)
# ax.plot(theta_rho, energy_axial1, 'royalblue', zorder=3, label=r"axialMin1")
# ax.plot(theta_rho, energy_axial2, 'forestgreen', zorder=3, label=r"axialMin2")
# ax.plot(-1.0*alphas, kappas, 'red', zorder=3, )
# lg = ax.legend(bbox_to_anchor=(0.0, 0.75), loc='upper left')
### PLot x and y- Axes
ax
.
plot
(
ax
.
get_xlim
(),[
0
,
0
],
'
k--
'
,
linewidth
=
0.5
)
ax
.
plot
([
0
,
0
],
ax
.
get_ylim
(),
'
k--
'
,
linewidth
=
0.5
)
ax
.
set_xlabel
(
r
"
$a_1$
"
,
fontsize
=
10
,
labelpad
=
0
)
ax
.
set_ylabel
(
r
"
$a_2$
"
,
fontsize
=
10
,
labelpad
=
0
)
# ax.set_ylabel(r"energy")
# ax.set_xticks([-np.pi/2, -np.pi/4 ,0, np.pi/4, np.pi/2 ])
# labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']
# ax.set_yticklabels(labels)
# ax.legend(loc='upper right')
fig
.
set_size_inches
(
width
,
height
)
fig
.
savefig
(
'
Energy_ContourG+.pdf
'
)
plt
.
show
()
#
#
#
# # Curve parametrised by \theta_rho = alpha in parameter space
# N=100;
# theta_rho = np.linspace(1, 3, num=N)
# print('theta_rho:', theta_rho)
#
#
# theta_values = []
#
#
# for t in theta_rho:
#
# s = (1.0/10.0)*t+0.1
# theta_values.append(s)
#
#
#
#
#
# theta_rho = np.array(theta_rho)
# theta_values = np.array(theta_values)
#
# betas_ = 2.0
#
# alphas, betas, thetas = np.meshgrid(theta_rho, betas_, theta_values, indexing='ij')
#
#
# harmonicMeanVec = np.vectorize(harmonicMean)
# arithmeticMeanVec = np.vectorize(arithmeticMean)
# prestrain_b1Vec = np.vectorize(prestrain_b1)
# prestrain_b2Vec = np.vectorize(prestrain_b2)
#
# GetMuGammaVec = np.vectorize(GetMuGamma)
# muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
#
# q1_vec = harmonicMeanVec(mu1, betas, thetas)
# q2_vec = arithmeticMeanVec(mu1, betas, thetas)
#
# b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas)
# b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas)
# special case: q12 == 0!! .. braucht eigentlich nur b1 & b2 ...
# print('type b1_values:', type(b1_values))
# print('size(q1)',q1.shape)
#
#
# energy_axial1 = []
# energy_axial2 = []
#
# # for b1 in b1_values:
# for i in range(len(theta_rho)):
# print('index i:', i)
#
# print('theta_rho[i]',theta_rho[i])
# print('theta_values[i]',theta_values[i])
#
# q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta_values[i])
# q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta_values[i])
# q12 = 0.0
# q3 = GetMuGamma(beta, theta_values[i],gamma,mu1,rho1,InputFilePath ,OutputFilePath )
# b1 = prestrain_b1(rho1,beta, theta_rho[i],theta_values[i] )
# b2 = prestrain_b2(rho1,beta, theta_rho[i],theta_values[i] )
#
#
# # q2_vec = arithmeticMean(mu1, betas, thetas)
# #
# # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas)
# # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas)
# print('q1[i]',q1)
# print('q2[i]',q2)
# print('q3[i]',q3)
# print('b1[i]',b1)
# print('b2[i]',b2)
# # print('q1[i]',q1[0][i])
# # print('q2[i]',q2[i])
# # print('b1[i]',b1[i])
# # print('b2[i]',b2[i])
# #compute axial energy #1 ...
#
# a_axial1 = np.array([b1,0])
# a_axial2 = np.array([0,b2])
# b = np.array([b1,b2])
#
# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ])
#
#
# tmp = H.dot(a_axial1)
#
# print('H',H)
# print('A',A)
# print('b',b)
# print('a_axial1',a_axial1)
# print('tmp',tmp)
#
# tmp = (1/2)*a_axial1.dot(tmp)
# print('tmp',tmp)
#
# tmp2 = A.dot(b)
# print('tmp2',tmp2)
# tmp2 = 2*a_axial1.dot(tmp2)
#
# print('tmp2',tmp2)
# energy_1 = tmp - tmp2
# print('energy_1',energy_1)
#
#
# energy_axial1.append(energy_1)
#
#
# tmp = H.dot(a_axial2)
#
# print('H',H)
# print('A',A)
# print('b',b)
# print('a_axial2',a_axial2)
# print('tmp',tmp)
#
# tmp = (1/2)*a_axial2.dot(tmp)
# print('tmp',tmp)
#
# tmp2 = A.dot(b)
# print('tmp2',tmp2)
# tmp2 = 2*a_axial2.dot(tmp2)
#
# print('tmp2',tmp2)
# energy_2 = tmp - tmp2
# print('energy_2',energy_2)
#
#
# energy_axial2.append(energy_2)
#
#
#
#
#
# print('theta_values', theta_values)
#
#
#
#
#
#
#
# kappas = []
# alphas = []
# # G.append(float(s[0]))
#
#
#
#
# for t in T :
#
# abar_current = sstar*abar+t*abarperp;
# # print('abar_current', abar_current)
# abar_current[abar_current < 1e-10] = 0
# # print('abar_current', abar_current)
#
# # G = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ])
# G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ]
#
# e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5]
# kappa = abar_current[0]+abar_current[1]
# alpha = math.atan2(e[1], e[0])
#
# print('angle current:', alpha)
#
# kappas.append(kappa)
# alphas.append(alpha)
#
#
#
# alphas = np.array(alphas)
# kappas = np.array(kappas)
#
#
# print('kappas:',kappas)
# print('alphas:',alphas)
# print('min alpha:', min(alphas))
# print('min kappa:', min(kappas))
#
# mpl.rcParams['text.usetex'] = True
# mpl.rcParams["font.family"] = "serif"
# mpl.rcParams["font.size"] = "9"
# width = 6.28 *0.5
# height = width / 1.618
# fig = plt.figure()
# # ax = plt.axes((0.15,0.21 ,0.75,0.75))
# ax = plt.axes((0.15,0.21 ,0.8,0.75))
# ax.tick_params(axis='x',which='major', direction='out',pad=5)
# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
# # ax.xaxis.set_major_locator(MultipleLocator(0.1))
# # ax.xaxis.set_minor_locator(MultipleLocator(0.05))
# # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
# # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4))
# ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
# ax.grid(True,which='major',axis='both',alpha=0.3)
#
#
#
#
# ax.plot(alphas, kappas, 'royalblue', zorder=3, )
# ax.plot(-1.0*alphas, kappas, 'red', zorder=3, )
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment