Skip to content
Snippets Groups Projects
Commit 2aa26626 authored by Klaus Böhnlein's avatar Klaus Böhnlein
Browse files

Add option for 2D PhaseDiagram

parent 7f4fe101
No related branches found
No related tags found
No related merge requests found
......@@ -33,10 +33,15 @@ theta = 1.0/8.0
# print_Cases = True
# print_Output = True
# make_3D_plot = True
# make_2D_plot = False
# make_3D_PhaseDiagram = True
# make_2D_PhaseDiagram = False
make_3D_plot = False
make_2D_plot = False
make_3D_PhaseDiagram = True
make_2D_PhaseDiagram = False
make_2D_plot = True
make_3D_PhaseDiagram = False
make_2D_PhaseDiagram = True
# --- Define q1, q2 , mu_gamma, q12 ---
......@@ -45,10 +50,14 @@ make_2D_PhaseDiagram = False
q1 = harmonicMean(mu_1, beta, theta)
q2 = arithmeticMean(mu_1, beta, theta)
# TEST
# TEST / TODO read from Cell-Output
q12 = 0.0 # (analytical example)
# --- Set mu_gamma to value or read from Cell-Output
# TODO read from Cell-Output
# --- Set mu_gamma to value
mu_gamma = q1 # TODO read from Cell-Output
b1 = prestrain_b1(rho_1, beta, alpha, theta)
b2 = prestrain_b2(rho_1, beta, alpha, theta)
......@@ -75,12 +84,13 @@ print('----------------------------')
# ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------
SamplePoints_3D = 100 # Number of sample points in each direction
SamplePoints_2D = 800 # Number of sample points in each direction
if make_3D_PhaseDiagram:
alphas_ = np.linspace(-20, 20, 80)
# betas_ = np.linspace(0.01,40.01,1)
#fix to one value:
betas_ = 2.0;
thetas_ = np.linspace(0.01,0.99,80)
alphas_ = np.linspace(-20, 20, SamplePoints_3D)
betas_ = np.linspace(0.01,40.01,SamplePoints_3D)
thetas_ = np.linspace(0.01,0.99,SamplePoints_3D)
# print('type of alphas', type(alphas_))
# print('Test:', type(np.array([mu_gamma])) )
alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij')
......@@ -96,46 +106,58 @@ if make_3D_PhaseDiagram:
print('Written to VTK-File:', VTKOutputName )
if make_2D_PhaseDiagram:
alphas_ = np.linspace(-20, 20, 80)
alphas_ = np.linspace(-20, 20, SamplePoints_2D)
# betas_ = np.linspace(0.01,40.01,1)
#fix to one value:
betas_ = 2.0;
beta = np.array([betas_])
thetas_ = np.linspace(0.01,0.99,80)
thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
# print('type of alphas', type(alphas_))
# print('Test:', type(np.array([mu_gamma])) )
alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij')
alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij')
classifyMin_geoVec = np.vectorize(classifyMin_geo)
G, angles, Types, curvature = classifyMin_geoVec(alphas,beta,thetas,mu_gamma,q12, mu_1, rho_1)
G, angles, Types, curvature = classifyMin_geoVec(alphas,betas,thetas,mu_gamma,q12, mu_1, rho_1)
# print('size of G:', G.shape)
# print('G:', G)
# Out = classifyMin_geoVec(alphas,betas,thetas)
# T = Out[2]
# --- Write to VTK
# VTKOutputName = "./PhaseDiagram2D"
# gridToVTK(VTKOutputName , alphas, thetas, beta, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} )
# print('Written to VTK-File:', VTKOutputName )
VTKOutputName = "./PhaseDiagram2D"
gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} )
print('Written to VTK-File:', VTKOutputName )
# --- Make 3D Scatter plot
if(make_3D_plot or make_2D_plot):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# pnt3d=ax.scatter(x,y,z,c=z.flat)
colors = cm.plasma(Types)
# pnt3d=ax.scatter(x,y,z,c=T.flat)
if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat)
# if make_2D_plot: plt.scatter(alphas,thetas,c=Types.flat)
if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat)
# pnt3d=ax.scatter(x,y,z,c=colors.flat)
cbar=plt.colorbar(pnt3d)
cbar.set_label("Values (units)")
# cbar=plt.colorbar(pnt3d)
# cbar.set_label("Values (units)")
ax.set_xlabel('alpha')
ax.set_ylabel('beta')
ax.set_zlabel('theta')
if make_3D_plot: ax.set_zlabel('theta')
plt.show()
# plt.savefig('common_labels.png', dpi=300)
# print('TEST 3D Scatter')
# print('T:', T)
# print('Type 1 occured here:', np.where(T == 1))
# print('Type 2 occured here:', np.where(T == 2))
# ALTERNATIVE
# colors = ("red", "green", "blue")
# groups = ("Type 1", "Type2", "Type3")
#
# # Create plot
# fig = plt.figure()
# ax = fig.add_subplot(1, 1, 1)
#
# for data, color, group in zip(Types, colors, groups):
# # x, y = data
# ax.scatter(alphas, thetas, alpha=0.8, c=color, edgecolors='none', label=group)
#
# plt.title('Matplot scatter plot')
# plt.legend(loc=2)
# plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment