Skip to content
Snippets Groups Projects
Commit 2ee71bde authored by Neukamm, Stefan's avatar Neukamm, Stefan
Browse files

result 2

parent e211fd7e
No related branches found
No related tags found
No related merge requests found
...@@ -7,10 +7,11 @@ import math ...@@ -7,10 +7,11 @@ import math
# x[2] : x3-component # x[2] : x3-component
def f(x): def f(x):
theta=0.25 theta=0.25
factor=0.8
# --- replace with your definition of indicatorFunction: # --- replace with your definition of indicatorFunction:
if ((abs(x[0]) < theta/2) and x[2]<-1/2+theta): if ((abs(x[0]) < theta/2) and x[2]<-1/2+theta):
return 1 #Phase1 return 1 #Phase1
elif ((abs(x[1]) < theta/2) and x[2]>1/2-theta): elif ((abs(x[1]) < factor*theta/2) and x[2]>1/2-theta):
return 1 #Phase1 return 1 #Phase1
else : else :
return 0 #Phase2 return 0 #Phase2
...@@ -54,8 +54,8 @@ elif case==-1: # Read from outputs ...@@ -54,8 +54,8 @@ elif case==-1: # Read from outputs
# #
# #
length=.05 length=0.05
N=300 N=200
h=length/N h=length/N
E=np.zeros([N,N]) E=np.zeros([N,N])
X=np.zeros([N,N]) X=np.zeros([N,N])
...@@ -67,7 +67,7 @@ for i in range(0,N): ...@@ -67,7 +67,7 @@ for i in range(0,N):
X[i,j]=(i-N/2)*h X[i,j]=(i-N/2)*h
Y[i,j]=(j-N/2)*h Y[i,j]=(j-N/2)*h
K=xytokappaalpha(x,y) K=xytokappaalpha(x,y)
E[i,j]=energy(K[0],K[1],Q,B) # N-1-j damit die x,y Axen stimmen E[i,j]=energy(K[0],K[1],Q,B)
fig = plt.figure(figsize=(7,6)) fig = plt.figure(figsize=(7,6))
ax = plt.gca() ax = plt.gca()
......
1 1 -0.0144287202371896055
1 2 0.014428690223795131
1 3 -2.0320334857961725e-11
1 1 12.4813265250416485
1 2 2.0831795458888962
1 3 3.83811740666402797e-10
2 1 2.0831795513179836
2 2 12.481326525238547
2 3 1.78942192122814843e-10
3 1 -6.40561063029264521e-10
3 2 -1.00945173229121783e-09
3 3 10.3922965257922275
material_prestrain used: material_neukamm
----- Input Parameters -----:
alpha: 8
gamma: 1
theta: 0.25
beta: 3
material parameters:
mu1: 1
mu2: 3
lambda1: 1
lambda2: 3
----------------------------:
Number of Elements in each direction: [4,4,4]
size of FiniteElementBasis: 240
Solver-type used: CG-Solver
---------- OUTPUT ----------
--------------------
Corrector-Matrix M_1:
-0.00922212 -2.49142e-10 0
-2.49142e-10 -0.00494017 0
0 0 0
--------------------
Corrector-Matrix M_2:
0.00494016 -2.03726e-10 0
-2.03726e-10 0.00922211 0
0 0 0
--------------------
Corrector-Matrix M_3:
1.90697e-10 -4.74653e-11 0
-4.74653e-11 1.93256e-10 0
0 0 0
--------------------
Effective Matrix Q:
12.4813 2.08318 3.83812e-10
2.08318 12.4813 1.78942e-10
-6.40561e-10 -1.00945e-09 10.3923
--- Prestrain Output ---
B_hat: -0.150032 0.150032 -2.16498e-10
B_eff: -0.0144287 0.0144287 -2.03203e-11 (Effective Prestrain)
------------------------
q1=12.4813
q2=12.4813
q3=10.3923
q12=2.08318
b1=-0.0144287
b2=0.0144287
b3=-2.03203e-11
b1_hat: -0.150032
b2_hat: 0.150032
b3_hat: -2.16498e-10
mu_gamma=10.3923
q_onetwo=2.083180
---------------------------------------------------------------------------------------------------------
Levels | q1 | q2 | q3 | b1 | b2 | b3 |
---------------------------------------------------------------------------------------------------------
2 & 1.24813e+01 & 1.24813e+01 & 1.03923e+01 & -1.44287e-02 & 1.44287e-02 & -2.03203e-11 &
---------------------------------------------------------------------------------------------------------
mu=80 60
lambda=80 25
rho=1.0 0
def f(x):
theta=0.25
factor=0.8
# --- replace with your definition of indicatorFunction:
if ((abs(x[0]) < theta/2) and x[2]<-1/2+theta):
return 1 #Phase1
elif ((abs(x[1]) < factor*theta/2) and x[2]>1/2-theta):
return 1 #Phase1
else :
return 0 #Phase2
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment