Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
48792f56
Commit
48792f56
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Add Script for AngleCurv-Gamma Subplots
parent
f82b9305
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/Plot-AngleCurvature-GammaV2_SubPlots.py
+483
-0
483 additions, 0 deletions
src/Plot-AngleCurvature-GammaV2_SubPlots.py
with
483 additions
and
0 deletions
src/Plot-AngleCurvature-GammaV2_SubPlots.py
0 → 100644
+
483
−
0
View file @
48792f56
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
sympy
as
sym
import
math
import
os
import
subprocess
import
fileinput
import
re
import
matlab.engine
import
sys
from
ClassifyMin
import
*
from
HelperFunctions
import
*
# from CellScript import *
from
mpl_toolkits.mplot3d
import
Axes3D
import
matplotlib.cm
as
cm
from
vtk.util
import
numpy_support
from
pyevtk.hl
import
gridToVTK
import
time
import
matplotlib.ticker
as
ticker
import
matplotlib
as
mpl
from
matplotlib.ticker
import
MultipleLocator
,
FormatStrFormatter
,
MaxNLocator
import
pandas
as
pd
# from matplotlib import rc
# rc('text', usetex=True) # Use LaTeX font
#
# import seaborn as sns
# sns.set(color_codes=True)
def
format_func
(
value
,
tick_number
):
# # find number of multiples of pi/2
# N = int(np.round(2 * value / np.pi))
# if N == 0:
# return "0"
# elif N == 1:
# return r"$\pi/2$"
# elif N == 2:
# return r"$\pi$"
# elif N % 2 > 0:
# return r"${0}\pi/2$".format(N)
# else:
# return r"${0}\pi$".format(N // 2)
# find number of multiples of pi/2
N
=
int
(
np
.
round
(
4
*
value
/
np
.
pi
))
if
N
==
0
:
return
"
0
"
elif
N
==
1
:
return
r
"
$\pi/4$
"
elif
N
==
2
:
return
r
"
$\pi/2$
"
elif
N
%
2
>
0
:
return
r
"
${0}\pi/2$
"
.
format
(
N
)
else
:
return
r
"
${0}\pi$
"
.
format
(
N
//
2
)
def
find_nearest
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
array
[
idx
]
def
find_nearestIdx
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
idx
InputFile
=
"
/inputs/computeMuGamma.parset
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
# --------- Run from src folder:
path_parent
=
os
.
path
.
dirname
(
os
.
getcwd
())
os
.
chdir
(
path_parent
)
path
=
os
.
getcwd
()
print
(
path
)
InputFilePath
=
os
.
getcwd
()
+
InputFile
OutputFilePath
=
os
.
getcwd
()
+
OutputFile
print
(
"
InputFilepath:
"
,
InputFilePath
)
print
(
"
OutputFilepath:
"
,
OutputFilePath
)
print
(
"
Path:
"
,
path
)
print
(
'
---- Input parameters: -----
'
)
alpha
=
10
mu1
=
1.0
rho1
=
1.0
beta
=
2.0
#5.0
theta
=
1.0
/
8.0
#
alpha
=
-
0.5
beta
=
40.0
theta
=
1
/
8.0
# # INTERESTING! from pi/2:
alpha
=
-
0.5
beta
=
40.0
theta
=
1
/
8.0
#
# # # INTERESTING! from pi/2:
# alpha = -0.2
# beta = 25.0
# theta= 1/2
# INTERESTING!:
# alpha = -0.5
# beta = 5.0
# theta= 1/30
# INTERESTING!:
# alpha = -0.25
# beta = 10.0
# theta= 3/4
# # INTERESTING!:
alpha
=
-
0.25
beta
=
10.0
theta
=
1
/
8
#
# INTERESTING!:
# alpha = -0.25
# beta = 5.0
# theta= 1/8
#
# # INTERESTING!:
alpha
=
-
0.5
beta
=
10.0
theta
=
1
/
8
alpha_1
=
-
1.0
alpha_2
=
-
0.75
alpha_3
=
-
0.70
angles_1
=
[]
angles_2
=
[]
angles_3
=
[]
beta
=
2.0
theta
=
0.25
print
(
'
mu1:
'
,
mu1
)
print
(
'
rho1:
'
,
rho1
)
print
(
'
alpha_1:
'
,
alpha_1
)
print
(
'
alpha_2:
'
,
alpha_2
)
print
(
'
alpha_3:
'
,
alpha_3
)
print
(
'
beta:
'
,
beta
)
print
(
'
theta:
'
,
theta
)
# print('gamma:', gamma)
print
(
'
----------------------------
'
)
# ----------------------------------------------------------------
gamma_min
=
0.01
gamma_max
=
1.5
Gamma_Values
=
np
.
linspace
(
gamma_min
,
gamma_max
,
num
=
100
)
# TODO variable Input Parameters...alpha,beta...
print
(
'
(Input) Gamma_Values:
'
,
Gamma_Values
)
# mu_gamma = []
# Gamma_Values = '0'
# Get values for mu_Gamma
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
muGammas
=
GetMuGammaVec
(
beta
,
theta
,
Gamma_Values
,
mu1
,
rho1
,
InputFilePath
,
OutputFilePath
)
print
(
'
muGammas:
'
,
muGammas
)
q12
=
0.0
q1
=
(
1.0
/
6.0
)
*
harmonicMean
(
mu1
,
beta
,
theta
)
q2
=
(
1.0
/
6.0
)
*
arithmeticMean
(
mu1
,
beta
,
theta
)
print
(
'
q1:
'
,
q1
)
print
(
'
q2:
'
,
q2
)
b1
=
prestrain_b1
(
rho1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho1
,
beta
,
alpha
,
theta
)
q3_star
=
math
.
sqrt
(
q1
*
q2
)
print
(
'
q3_star:
'
,
q3_star
)
# TODO these have to be compatible with input parameters!!!
# compute certain ParameterValues that this makes sense
# b1 = q3_star
# b2 = q1
print
(
'
b1:
'
,
b1
)
print
(
'
b2:
'
,
b2
)
# return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output)
# classifyMin_anaVec = np.vectorize(classifyMin_ana)
# G, angles, Types, curvature = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
G
,
angles_1
,
Types
,
curvature_1
=
classifyMin_anaVec
(
alpha_1
,
beta
,
theta
,
muGammas
,
mu1
,
rho1
)
G
,
angles_2
,
Types
,
curvature_2
=
classifyMin_anaVec
(
alpha_2
,
beta
,
theta
,
muGammas
,
mu1
,
rho1
)
G
,
angles_3
,
Types
,
curvature_3
=
classifyMin_anaVec
(
alpha_3
,
beta
,
theta
,
muGammas
,
mu1
,
rho1
)
# _,angles,_,_ = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
print
(
'
angles_1:
'
,
angles_1
)
print
(
'
angles_2:
'
,
angles_2
)
print
(
'
angles_3:
'
,
angles_3
)
print
(
'
curvature_1:
'
,
curvature_1
)
print
(
'
curvature_2:
'
,
curvature_2
)
print
(
'
curvature_3:
'
,
curvature_3
)
idx
=
find_nearestIdx
(
muGammas
,
q3_star
)
print
(
'
GammaValue Idx closest to q_3^*
'
,
idx
)
gammaClose
=
Gamma_Values
[
idx
]
print
(
'
GammaValue(Idx) with mu_gamma closest to q_3^*
'
,
gammaClose
)
determinantVec
=
np
.
vectorize
(
determinant
)
detValues
=
determinantVec
(
q1
,
q2
,
muGammas
,
q12
)
print
(
'
detValues:
'
,
detValues
)
detZeroidx
=
find_nearestIdx
(
detValues
,
0
)
print
(
'
idx where det nearest to zero
'
,
idx
)
gammaClose
=
Gamma_Values
[
detZeroidx
]
print
(
'
gammaClose:
'
,
gammaClose
)
# --- Convert to numpy array
Gamma_Values
=
np
.
array
(
Gamma_Values
)
angles_1
=
np
.
array
(
angles_1
)
angles_2
=
np
.
array
(
angles_2
)
angles_3
=
np
.
array
(
angles_3
)
curvature_1
=
np
.
array
(
curvature_1
)
curvature_2
=
np
.
array
(
curvature_2
)
curvature_3
=
np
.
array
(
curvature_3
)
# ---------------- Create Plot -------------------
# plt.figure()
# Styling
# plt.style.use("seaborn-darkgrid")
# plt.rcParams["font.family"] = "Avenir"
# plt.rcParams["font.size"] = 16
mpl
.
rcParams
[
'
text.usetex
'
]
=
True
mpl
.
rcParams
[
"
font.family
"
]
=
"
serif
"
mpl
.
rcParams
[
"
font.size
"
]
=
"
9
"
width
=
6.28
height
=
width
/
1.618
# height = width / 2.5
fig
=
plt
.
figure
(
figsize
=
(
width
,
height
))
# fig,ax = plt.subplots(nrows=2,ncols=3,figsize=(width,height)) # more than one plot
# fig,ax = plt.subplots(nrows=1,ncols=3,figsize=(width,height),sharey=True) # Share Y-axis
# fig.tight_layout()
#
#
# fig = plt.figure()
gs
=
fig
.
add_gridspec
(
nrows
=
2
,
ncols
=
3
,
hspace
=
0.15
,
wspace
=
0.1
)
# ax = gs.subplots(sharey=True)
# Create Three Axes Objects
ax4
=
fig
.
add_subplot
(
gs
[
1
,
0
])
ax5
=
fig
.
add_subplot
(
gs
[
1
,
1
],
sharey
=
ax4
)
ax6
=
fig
.
add_subplot
(
gs
[
1
,
2
],
sharey
=
ax4
)
plt
.
setp
(
ax5
.
get_yticklabels
(),
visible
=
False
)
plt
.
setp
(
ax6
.
get_yticklabels
(),
visible
=
False
)
ax1
=
fig
.
add_subplot
(
gs
[
0
,
0
],
sharex
=
ax4
)
ax2
=
fig
.
add_subplot
(
gs
[
0
,
1
],
sharey
=
ax1
)
ax3
=
fig
.
add_subplot
(
gs
[
0
,
2
],
sharey
=
ax1
)
plt
.
setp
(
ax1
.
get_xticklabels
(),
visible
=
False
)
plt
.
setp
(
ax2
.
get_xticklabels
(),
visible
=
False
)
plt
.
setp
(
ax3
.
get_xticklabels
(),
visible
=
False
)
plt
.
setp
(
ax2
.
get_yticklabels
(),
visible
=
False
)
plt
.
setp
(
ax3
.
get_yticklabels
(),
visible
=
False
)
# ax = plt.axes((0.15,0.21 ,0.75,0.75))
# ax = plt.axes((0.15,0.21 ,0.8,0.75))
# ax.tick_params(axis='x',which='major', direction='out',pad=5)
# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
# ax.xaxis.set_major_locator(MultipleLocator(0.1))
# ax.xaxis.set_minor_locator(MultipleLocator(0.05))
# ax[0,0].yaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
# ax[0,0].yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
# ax[0,0].yaxis.set_major_formatter(plt.FuncFormatter(format_func))
# ax[0,1].yaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
# ax[0,1].yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
# ax[0,1].yaxis.set_major_formatter(plt.FuncFormatter(format_func))
# ax[0,2].yaxis.set_major_locator(plt.MultipleLocator(np.pi / 8))
# ax[0,2].yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16))
# ax[0,2].yaxis.set_major_formatter(plt.FuncFormatter(format_func))
#
# ax[0,0].grid(True,which='major',axis='both',alpha=0.3)
# ax[0,1].grid(True,which='major',axis='both',alpha=0.3)
# ax[0,2].grid(True,which='major',axis='both',alpha=0.3)
ax1
.
yaxis
.
set_major_locator
(
plt
.
MultipleLocator
(
np
.
pi
/
8
))
ax1
.
yaxis
.
set_minor_locator
(
plt
.
MultipleLocator
(
np
.
pi
/
16
))
ax1
.
yaxis
.
set_major_formatter
(
plt
.
FuncFormatter
(
format_func
))
ax2
.
yaxis
.
set_major_locator
(
plt
.
MultipleLocator
(
np
.
pi
/
8
))
ax2
.
yaxis
.
set_minor_locator
(
plt
.
MultipleLocator
(
np
.
pi
/
16
))
ax2
.
yaxis
.
set_major_formatter
(
plt
.
FuncFormatter
(
format_func
))
ax3
.
yaxis
.
set_major_locator
(
plt
.
MultipleLocator
(
np
.
pi
/
8
))
ax3
.
yaxis
.
set_minor_locator
(
plt
.
MultipleLocator
(
np
.
pi
/
16
))
ax3
.
yaxis
.
set_major_formatter
(
plt
.
FuncFormatter
(
format_func
))
ax1
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
ax2
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
ax3
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
ax1
.
plot
(
Gamma_Values
,
angles_1
,
'
royalblue
'
,
zorder
=
3
,
)
ax2
.
plot
(
Gamma_Values
,
angles_2
,
'
royalblue
'
,
zorder
=
3
,
)
ax3
.
plot
(
Gamma_Values
,
angles_3
,
'
royalblue
'
,
zorder
=
3
,
)
# ax1.set_xlabel(r"$\gamma$")
ax1
.
set_ylabel
(
r
"
angle $\alpha$
"
)
ax1
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.25
))
ax1
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.5
))
# ax2.set_xlabel(r"$\gamma$")
ax2
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.25
))
ax2
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.5
))
# ax3.set_xlabel(r"$\gamma$")
# ax[2].set_ylabel(r"angle $\alpha$")
ax3
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.25
))
ax3
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.5
))
# Labels to use in the legend for each line
line_labels
=
[
r
"
$\theta_\mu = 1.0$
"
,
r
"
$\theta_\mu = 2.0$
"
,
r
"
$\theta_\mu = 5.0$
"
,
r
"
$\theta_\mu = 10.0$
"
]
labels
=
[
'
$0$
'
,
r
'
$\pi/8$
'
,
r
'
$\pi/4$
'
,
r
'
$3\pi/8$
'
,
r
'
$\pi/2$
'
]
ax1
.
set_yticks
([
0
,
np
.
pi
/
8
,
np
.
pi
/
4
,
3
*
np
.
pi
/
8
,
np
.
pi
/
2
,
])
ax2
.
set_yticks
([
0
,
np
.
pi
/
8
,
np
.
pi
/
4
,
3
*
np
.
pi
/
8
,
np
.
pi
/
2
])
ax3
.
set_yticks
([
0
,
np
.
pi
/
8
,
np
.
pi
/
4
,
3
*
np
.
pi
/
8
,
np
.
pi
/
2
])
ax1
.
set_yticklabels
(
labels
)
ax2
.
set_yticklabels
(
labels
)
ax3
.
set_yticklabels
(
labels
)
ax1
.
set_ylim
([
0
-
0.1
,
np
.
pi
/
2
+
0.1
])
ax2
.
set_ylim
([
0
-
0.1
,
np
.
pi
/
2
+
0.1
])
ax3
.
set_ylim
([
0
-
0.1
,
np
.
pi
/
2
+
0.1
])
# for i in range(3):
# ax1[i].set_ylim([0-0.1, np.pi/2+0.1])
# Plot Gamma Value that is closest to q3_star
l1
=
ax1
.
axvline
(
x
=
gammaClose
,
color
=
'
midnightblue
'
,
linestyle
=
'
dashed
'
,
linewidth
=
1
,
label
=
'
$\gamma^*$
'
)
l2
=
ax2
.
axvline
(
x
=
gammaClose
,
color
=
'
midnightblue
'
,
linestyle
=
'
dashed
'
,
linewidth
=
1
,
label
=
'
$\gamma^*$
'
)
l3
=
ax3
.
axvline
(
x
=
gammaClose
,
color
=
'
midnightblue
'
,
linestyle
=
'
dashed
'
,
linewidth
=
1
,
label
=
'
$\gamma^*$
'
)
# -------------------------------------------------------------------------------------
# ax[1,0].grid(True,which='major',axis='both',alpha=0.3)
# ax[1,1].grid(True,which='major',axis='both',alpha=0.3)
# ax[1,2].grid(True,which='major',axis='both',alpha=0.3)
# ax[1,0].set_xlabel(r"$\gamma$")
# ax[1,0].set_ylabel(r"curvature $\kappa$")
# ax[1,0].xaxis.set_minor_locator(MultipleLocator(0.5))
# ax[1,0].xaxis.set_major_locator(MultipleLocator(1))
# ax[1,0].yaxis.set_minor_locator(MultipleLocator(0.5))
# ax[1,0].yaxis.set_major_locator(MultipleLocator(1))
# ax[1,1].set_xlabel(r"$\gamma$")
# # ax[1].set_ylabel(r"angle $\alpha$")
# ax[1,1].xaxis.set_minor_locator(MultipleLocator(0.5))
# ax[1,1].xaxis.set_major_locator(MultipleLocator(1))
# ax[1,2].set_xlabel(r"$\gamma$")
# # ax[2].set_ylabel(r"angle $\alpha$")
# ax[1,2].xaxis.set_minor_locator(MultipleLocator(0.5))
# ax[1,2].xaxis.set_major_locator(MultipleLocator(1))
# l4 = ax[1,0].axvline(x = gammaClose, color = 'midnightblue', linestyle = 'dashed', linewidth=1, label='$\gamma^*$', zorder=4)
# l5 = ax[1,1].axvline(x = gammaClose, color = 'midnightblue', linestyle = 'dashed', linewidth=1, label='$\gamma^*$', zorder=4)
# l6 = ax[1,2].axvline(x = gammaClose, color = 'midnightblue', linestyle = 'dashed', linewidth=1, label='$\gamma^*$' ,zorder=4)
ax4
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
ax5
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
ax6
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
ax4
.
plot
(
Gamma_Values
,
curvature_1
,
'
forestgreen
'
,
zorder
=
3
,
)
ax5
.
plot
(
Gamma_Values
,
curvature_2
,
'
forestgreen
'
,
zorder
=
3
,
)
ax6
.
plot
(
Gamma_Values
,
curvature_3
,
'
forestgreen
'
,
zorder
=
3
,
)
# ax2.plot(Gamma_Values, curvature_1, 'forestgreen', zorder=3, )
# ax2.plot(Gamma_Values, curvature_2, 'forestgreen', zorder=3, )
# ax2.plot(Gamma_Values, curvature_3, 'forestgreen', zorder=3, )
ax4
.
set_xlabel
(
r
"
$\gamma$
"
)
ax4
.
set_ylabel
(
r
"
curvature $\kappa$
"
)
# ax4.set_ylabel(r"curvature $\kappa$", labelpad=10)
ax4
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.25
))
ax4
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.5
))
# ax4.yaxis.set_minor_locator(MultipleLocator(0.1))
ax4
.
yaxis
.
set_major_locator
(
MultipleLocator
(
0.05
))
ax5
.
set_xlabel
(
r
"
$\gamma$
"
)
# ax[1].set_ylabel(r"angle $\alpha$")
ax5
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.25
))
ax5
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.5
))
ax6
.
set_xlabel
(
r
"
$\gamma$
"
)
# ax[2].set_ylabel(r"angle $\alpha$")
ax6
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.25
))
ax6
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.5
))
l4
=
ax4
.
axvline
(
x
=
gammaClose
,
color
=
'
midnightblue
'
,
linestyle
=
'
dashed
'
,
linewidth
=
1
,
label
=
'
$\gamma^*$
'
,
zorder
=
4
)
l5
=
ax5
.
axvline
(
x
=
gammaClose
,
color
=
'
midnightblue
'
,
linestyle
=
'
dashed
'
,
linewidth
=
1
,
label
=
'
$\gamma^*$
'
,
zorder
=
4
)
l6
=
ax6
.
axvline
(
x
=
gammaClose
,
color
=
'
midnightblue
'
,
linestyle
=
'
dashed
'
,
linewidth
=
1
,
label
=
'
$\gamma^*$
'
,
zorder
=
4
)
#
#
## LEGEND
line_labels
=
[
r
"
$\gamma^*$
"
]
fig
.
legend
([
l1
],
[
r
"
$\gamma^*$
"
],
# bbox_to_anchor=[0.5, 0.92],
bbox_to_anchor
=
[
0.5
,
0.94
],
loc
=
'
center
'
,
ncol
=
3
)
# plt.subplots_adjust(wspace=0.4, hspace=0.0)
# plt.tight_layout()
# Adjust the scaling factor to fit your legend text completely outside the plot
# (smaller value results in more space being made for the legend)
# plt.subplots_adjust(right=0.9)
# plt.subplots_adjust(bottom=0.2)
fig
.
align_ylabels
()
fig
.
set_size_inches
(
width
,
height
)
fig
.
savefig
(
'
Plot-Angle-Gamma.pdf
'
)
plt
.
show
()
# plt.figure()
# plt.title(r'angle$-\mu_\gamma(\gamma)$-Plot')
# plt.plot(muGammas, angles)
# plt.scatter(muGammas, angles)
# # plt.axis([0, 6, 0, 20])
# # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.axvline(x = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axvline(x = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.xlabel("$\mu_\gamma$")
# plt.ylabel("angle")
# plt.legend()
# plt.show()
#
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment