Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
589a2c80
Commit
589a2c80
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Update & Add Prestrain Plot Methods in python
parent
74577270
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/Plot_Angle_Lemma1.4.py
+1
-1
1 addition, 1 deletion
src/Plot_Angle_Lemma1.4.py
src/Plot_CurvatureLemma1.4.py
+87
-69
87 additions, 69 deletions
src/Plot_CurvatureLemma1.4.py
src/Plot_Prestrain_Lemma1.4.py
+239
-369
239 additions, 369 deletions
src/Plot_Prestrain_Lemma1.4.py
with
327 additions
and
439 deletions
src/Plot_Angle_Lemma1.4.py
+
1
−
1
View file @
589a2c80
...
@@ -165,7 +165,7 @@ lambda1 = 0.0
...
@@ -165,7 +165,7 @@ lambda1 = 0.0
gamma
=
1.0
/
4.0
gamma
=
1.0
/
4.0
gamma
=
'
infinity
'
#Elliptic Setting
gamma
=
'
infinity
'
#Elliptic Setting
gamma
=
'
0
'
#Hyperbolic Setting
#
gamma = '0' #Hyperbolic Setting
# gamma = 0.5
# gamma = 0.5
...
...
This diff is collapsed.
Click to expand it.
src/Plot_CurvatureLemma1.4.py
+
87
−
69
View file @
589a2c80
...
@@ -14,6 +14,11 @@ import matplotlib.ticker as ticker
...
@@ -14,6 +14,11 @@ import matplotlib.ticker as ticker
# from subprocess import Popen, PIPE
# from subprocess import Popen, PIPE
#import sys
#import sys
import
matplotlib.ticker
as
tickers
import
matplotlib
as
mpl
from
matplotlib.ticker
import
MultipleLocator
,
FormatStrFormatter
,
MaxNLocator
import
pandas
as
pd
###################### makePlot.py #########################
###################### makePlot.py #########################
# Generalized Plot-Script giving the option to define
# Generalized Plot-Script giving the option to define
# quantity of interest and the parameter it depends on
# quantity of interest and the parameter it depends on
...
@@ -165,7 +170,7 @@ xmax = 0.4
...
@@ -165,7 +170,7 @@ xmax = 0.4
numPoints
=
1
00
numPoints
=
2
00
X_Values
=
np
.
linspace
(
xmin
,
xmax
,
num
=
numPoints
)
X_Values
=
np
.
linspace
(
xmin
,
xmax
,
num
=
numPoints
)
print
(
X_Values
)
print
(
X_Values
)
...
@@ -297,77 +302,90 @@ print('y_rest:', y_rest)
...
@@ -297,77 +302,90 @@ print('y_rest:', y_rest)
print
(
'
np.nonzero(X_Values>x_plotValues[1]
'
,
np
.
nonzero
(
X_Values
>
x_plotValues
[
1
])
)
print
(
'
np.nonzero(X_Values>x_plotValues[1]
'
,
np
.
nonzero
(
X_Values
>
x_plotValues
[
1
])
)
# ---------------- Create Plot -------------------
# --- Convert to numpy array
plt
.
figure
()
Y_Values
=
np
.
array
(
Y_Values
)
X_Values
=
np
.
array
(
X_Values
)
f
,
ax
=
plt
.
subplots
(
1
)
# plt.title(r''+ yName + '-Plot')
# plt.plot(X_Values, Y_Values,linewidth=2, '.k')
# plt.plot(X_Values, Y_Values,'.k',markersize=1)
# plt.plot(X_Values, Y_Values,'.',markersize=0.8)
# plt.plot(X_Values, Y_Values)
# ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b')
# ax.plot(x_rest, y_rest, 'b')
# ax.plot(X_Values, Y_Values)
# ax.scatter(X_Values, Y_Values)
# plt.plot(x_plotValues, y_plotValues,'.')
# plt.scatter(X_Values, Y_Values, alpha=0.3)
# plt.scatter(X_Values, Y_Values)
# plt.plot(X_Values, Y_Values,'.')
# plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# plt.axis([0, 6, 0, 20])
ax
.
plot
(
X_Values
[
X_Values
>
jump_xValues
[
0
]],
Y_Values
[
X_Values
>
jump_xValues
[
0
]]
,
'
b
'
)
ax
.
plot
(
X_Values
[
X_Values
<
jump_xValues
[
0
]],
Y_Values
[
X_Values
<
jump_xValues
[
0
]],
'
b
'
)
plt
.
xlabel
(
xName
)
# ---------------- Create Plot -------------------
mpl
.
rcParams
[
'
text.usetex
'
]
=
True
mpl
.
rcParams
[
"
font.family
"
]
=
"
serif
"
mpl
.
rcParams
[
"
font.size
"
]
=
"
9
"
# width as measured in inkscape
width
=
6.28
*
0.5
height
=
width
/
1.618
fig
=
plt
.
figure
()
ax
=
plt
.
axes
((
0.15
,
0.18
,
0.8
,
0.8
))
ax
.
tick_params
(
axis
=
'
x
'
,
which
=
'
major
'
,
direction
=
'
out
'
,
pad
=
3
)
ax
.
tick_params
(
axis
=
'
y
'
,
which
=
'
major
'
,
length
=
3
,
width
=
1
,
direction
=
'
out
'
,
pad
=
3
)
ax
.
xaxis
.
set_major_locator
(
MultipleLocator
(
0.05
))
ax
.
xaxis
.
set_minor_locator
(
MultipleLocator
(
0.025
))
ax
.
grid
(
True
,
which
=
'
major
'
,
axis
=
'
both
'
,
alpha
=
0.3
)
# plt.figure()
# f,ax=plt.subplots(1)
ax
.
set_xlabel
(
r
"
volume fraction $\theta$
"
)
ax
.
set_ylabel
(
r
"
curvature $\kappa$
"
)
# plt.xlabel(xName)
# plt.ylabel(yName)
# plt.ylabel(yName)
# plt.ylabel('$\kappa$')
plt
.
ylabel
(
'
$\kappa$
'
)
# ax.grid(True)
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
# Add transition Points
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1))
if
gamma
==
'
0
'
:
transition_point1
=
0.13663316582914573
transition_point2
=
0.20899497487437185
plt
.
axvline
(
transition_point1
,
ymin
=
0
,
ymax
=
1
,
color
=
'
orange
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
,
linewidth
=
1
)
plt
.
axvline
(
transition_point2
,
ymin
=
0
,
ymax
=
1
,
color
=
'
orange
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
,
linewidth
=
1
)
ax
.
grid
(
True
)
ax
.
plot
(
X_Values
[
X_Values
<
jump_xValues
[
0
]],
Y_Values
[
X_Values
<
jump_xValues
[
0
]],
'
royalblue
'
)
# # if angle PLOT :
ax
.
plot
(
X_Values
[
np
.
where
(
np
.
logical_and
(
X_Values
>
jump_xValues
[
0
],
X_Values
<
jump_xValues
[
1
]))
],
Y_Values
[
np
.
where
(
np
.
logical_and
(
X_Values
>
jump_xValues
[
0
]
,
X_Values
<
jump_xValues
[
1
]
))]
,
'
royalblue
'
)
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
ax
.
plot
(
X_Values
[
X_Values
>
jump_xValues
[
1
]],
Y_Values
[
X_Values
>
jump_xValues
[
1
]],
'
royalblue
'
)
# ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
# ax.plot(x_plotValues,y_plotValues, 'royalblue')
#
ax
.
scatter
([
transition_point1
,
transition_point2
],[
jump_yValues
[
0
],
jump_yValues
[
1
]],
s
=
6
,
marker
=
'
o
'
,
cmap
=
None
,
norm
=
None
,
facecolor
=
'
black
'
,
# ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
edgecolor
=
'
black
'
,
vmin
=
None
,
vmax
=
None
,
alpha
=
None
,
linewidths
=
None
,
zorder
=
3
)
#
# # Plot every other line.. not the jumps...
ax
.
text
(
transition_point1
-
0.02
,
jump_yValues
[
0
]
-
0.02
,
r
"
$4$
"
,
size
=
6
,
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
)
# tmp = 1
)
# for idx, x in enumerate(x_plotValues):
# if idx > 0 and tmp == 1:
ax
.
text
(
transition_point2
+
0.012
,
jump_yValues
[
1
]
+
0.02
,
r
"
$5$
"
,
size
=
6
,
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
)
# # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] )
)
# ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] ,'b')
# tmp = 0
if
gamma
==
'
infinity
'
:
# else:
transition_point1
=
0.13663316582914573
# tmp = 1
transition_point2
=
0.1929145728643216
transition_point3
=
0.24115577889447234
# plt.plot([x_plotValues[0],x_plotValues[1]] ,[y_plotValues[0],y_plotValues[1]] )
plt
.
axvline
(
transition_point1
,
ymin
=
0
,
ymax
=
1
,
color
=
'
orange
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
,
linewidth
=
1
)
# plt.plot([x_plotValues[2],x_plotValues[3]] ,[y_plotValues[2],y_plotValues[3]] )
plt
.
axvline
(
transition_point2
,
ymin
=
0
,
ymax
=
1
,
color
=
'
orange
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
,
linewidth
=
1
)
# plt.plot([x_plotValues[4],x_plotValues[5]] ,[y_plotValues[4],y_plotValues[5]] )
plt
.
axvline
(
transition_point3
,
ymin
=
0
,
ymax
=
1
,
color
=
'
orange
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
,
linewidth
=
1
)
# plt.plot([x_plotValues[6],x_plotValues[7]] ,[y_plotValues[6],y_plotValues[7]] )
ax
.
plot
(
X_Values
[
X_Values
<
jump_xValues
[
0
]],
Y_Values
[
X_Values
<
jump_xValues
[
0
]],
'
royalblue
'
)
ax
.
plot
(
X_Values
[
X_Values
>
jump_xValues
[
0
]],
Y_Values
[
X_Values
>
jump_xValues
[
0
]],
'
royalblue
'
)
for
x
in
jump_xValues
:
idx1
=
find_nearestIdx
(
X_Values
,
transition_point1
)
plt
.
axvline
(
x
,
ymin
=
0
,
ymax
=
1
,
color
=
'
g
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
)
idx2
=
find_nearestIdx
(
X_Values
,
transition_point2
)
print
(
'
idx1
'
,
idx1
)
# plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
print
(
'
idx2
'
,
idx2
)
Y_TP1
=
Y_Values
[
idx1
]
Y_TP2
=
Y_Values
[
idx2
]
print
(
'
Y_TP1
'
,
Y_TP1
)
print
(
'
Y_TP2
'
,
Y_TP2
)
ax
.
scatter
([
transition_point1
,
transition_point2
],[
Y_TP1
,
Y_TP2
],
s
=
6
,
marker
=
'
o
'
,
cmap
=
None
,
norm
=
None
,
facecolor
=
'
black
'
,
edgecolor
=
'
black
'
,
vmin
=
None
,
vmax
=
None
,
alpha
=
None
,
linewidths
=
None
,
zorder
=
3
)
ax
.
text
(
transition_point1
-
0.02
,
Y_TP1
-
0.02
,
r
"
$6$
"
,
size
=
6
,
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
)
)
ax
.
text
(
transition_point2
+
0.015
,
Y_TP2
+
0.020
,
r
"
$7$
"
,
size
=
6
,
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
))
# for x in jump_xValues:
# plt.axvline(x,ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
fig
.
set_size_inches
(
width
,
height
)
fig
.
savefig
(
'
Plot-Curvature-Theta.pdf
'
)
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
...
...
This diff is collapsed.
Click to expand it.
src/Plot_Prestrain_Lemma1.4.py
+
239
−
369
View file @
589a2c80
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment