Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
9f8437ba
Commit
9f8437ba
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Add plos for a_star
parent
e99ca88d
No related branches found
No related tags found
No related merge requests found
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/Plot_aStar_elliptic.py
+772
-0
772 additions, 0 deletions
src/Plot_aStar_elliptic.py
src/Plot_aStar_hyperbolic.py
+770
-0
770 additions, 0 deletions
src/Plot_aStar_hyperbolic.py
with
1542 additions
and
0 deletions
src/Plot_aStar_elliptic.py
0 → 100644
+
772
−
0
View file @
9f8437ba
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
sympy
as
sym
import
math
import
os
import
subprocess
import
fileinput
import
re
import
matlab.engine
from
HelperFunctions
import
*
from
ClassifyMin
import
*
import
matplotlib.ticker
as
tickers
import
matplotlib
as
mpl
from
matplotlib.ticker
import
MultipleLocator
,
FormatStrFormatter
,
MaxNLocator
import
pandas
as
pd
# import tikzplotlib
# # from pylab import *
# from tikzplotlib import save as tikz_save
# Needed ?
mpl
.
use
(
'
pdf
'
)
# from subprocess import Popen, PIPE
#import sys
###################### makePlot.py #########################
# Generalized Plot-Script giving the option to define
# quantity of interest and the parameter it depends on
# to create a plot
#
# Input: Define y & x for "x-y plot" as Strings
# - Run the 'Cell-Problem' for the different Parameter-Points
# (alternatively run 'Compute_MuGamma' if quantity of interest
# is q3=muGamma for a significant Speedup)
###########################################################
# figsize argument takes inputs in inches
# and we have the width of our document in pts.
# To set the figure size we construct a function
# to convert from pts to inches and to determine
# an aesthetic figure height using the golden ratio:
# def set_size(width, fraction=1):
# """Set figure dimensions to avoid scaling in LaTeX.
#
# Parameters
# ----------
# width: float
# Document textwidth or columnwidth in pts
# fraction: float, optional
# Fraction of the width which you wish the figure to occupy
#
# Returns
# -------
# fig_dim: tuple
# Dimensions of figure in inches
# """
# # Width of figure (in pts)
# fig_width_pt = width * fraction
#
# # Convert from pt to inches
# inches_per_pt = 1 / 72.27
#
# # Golden ratio to set aesthetic figure height
# # https://disq.us/p/2940ij3
# golden_ratio = (5**.5 - 1) / 2
#
# # Figure width in inches
# fig_width_in = fig_width_pt * inches_per_pt
# # Figure height in inches
# fig_height_in = fig_width_in * golden_ratio
#
# fig_dim = (fig_width_in, fig_height_in)
#
# return fig_dim
#
def
format_func
(
value
,
tick_number
):
# # find number of multiples of pi/2
# N = int(np.round(2 * value / np.pi))
# if N == 0:
# return "0"
# elif N == 1:
# return r"$\pi/2$"
# elif N == 2:
# return r"$\pi$"
# elif N % 2 > 0:
# return r"${0}\pi/2$".format(N)
# else:
# return r"${0}\pi$".format(N // 2)
# find number of multiples of pi/2
N
=
int
(
np
.
round
(
4
*
value
/
np
.
pi
))
if
N
==
0
:
return
"
0
"
elif
N
==
1
:
return
r
"
$\pi/4$
"
elif
N
==
2
:
return
r
"
$\pi/2$
"
elif
N
%
2
>
0
:
return
r
"
${0}\pi/2$
"
.
format
(
N
)
else
:
return
r
"
${0}\pi$
"
.
format
(
N
//
2
)
def
find_nearest
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
array
[
idx
]
def
find_nearestIdx
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
idx
# TODO
# - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3
# - Also Add option to plot Minimization Output
# ----- Setup Paths -----
# InputFile = "/inputs/cellsolver.parset"
# OutputFile = "/outputs/output.txt"
InputFile
=
"
/inputs/computeMuGamma.parset
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
# path = os.getcwd()
# InputFilePath = os.getcwd()+InputFile
# OutputFilePath = os.getcwd()+OutputFile
# --------- Run from src folder:
path_parent
=
os
.
path
.
dirname
(
os
.
getcwd
())
os
.
chdir
(
path_parent
)
path
=
os
.
getcwd
()
print
(
path
)
InputFilePath
=
os
.
getcwd
()
+
InputFile
OutputFilePath
=
os
.
getcwd
()
+
OutputFile
print
(
"
InputFilepath:
"
,
InputFilePath
)
print
(
"
OutputFilepath:
"
,
OutputFilePath
)
print
(
"
Path:
"
,
path
)
#---------------------------------------------------------------
print
(
'
---- Input parameters: -----
'
)
mu1
=
10.0
# lambda1 = 10.0
rho1
=
1.0
alpha
=
5.0
beta
=
10.0
theta
=
1.0
/
4.0
lambda1
=
0.0
gamma
=
1.0
/
4.0
gamma
=
'
infinity
'
#Elliptic Setting
# gamma = '0' #Hyperbolic Setting
# gamma = 0.5
print
(
'
mu1:
'
,
mu1
)
print
(
'
rho1:
'
,
rho1
)
print
(
'
alpha:
'
,
alpha
)
print
(
'
beta:
'
,
beta
)
print
(
'
theta:
'
,
theta
)
print
(
'
gamma:
'
,
gamma
)
print
(
'
----------------------------
'
)
# TODO? : Ask User for Input ...
# function = input("Enter value you want to plot (y-value):\n")
# print(f'You entered {function}')
# parameter = input("Enter Parameter this value depends on (x-value) :\n")
# print(f'You entered {parameter}')
# Add Option to change NumberOfElements used for computation of Cell-Problem
# --- Define Quantity of interest:
# Options: 'q1', 'q2', 'q3', 'q12' ,'q21', 'q31', 'q13' , 'q23', 'q32' , 'b1', 'b2' ,'b3'
# TODO: EXTRA (MInimization Output) 'Minimizer (norm?)' 'angle', 'type', 'curvature'
# yName = 'q12'
# # yName = 'b1'
# yName = 'q3'
# yName = 'angle'
# yName = 'curvature'
yName
=
'
MinVec
'
# --- Define Parameter this function/quantity depends on:
# Options: mu1 ,lambda1, rho1 , alpha, beta, theta, gamma
# xName = 'theta'
# xName = 'gamma'
# xName = 'lambda1'
xName
=
'
theta
'
# --- define Interval of x-va1ues:
# xmin = 0.15
xmin
=
0.01
xmax
=
0.41
# xmin = 0.18 #Achtung bei manchen werten von theta ist integration in ComputeMuGama/Cell_problem schlecht!
# xmax = 0.41 # Materialfunktion muss von Gitter aufgelöst werden
# müssen vielfache von (1/2^i) sein wobei i integer
# xmin = 0.18 #Achtung bei manchen werten von theta ist integration in ComputeMuGama/Cell_problem schlecht!
# xmax = 0.23
# xmin = 0.01
# xmax = 3.0
numPoints
=
70
# numPoints = 50
X_Values
=
np
.
linspace
(
xmin
,
xmax
,
num
=
numPoints
)
print
(
X_Values
)
Y_Values
=
[]
for
theta
in
X_Values
:
print
(
'
Situation of Lemma1.4
'
)
q12
=
0.0
q1
=
(
1.0
/
6.0
)
*
harmonicMean
(
mu1
,
beta
,
theta
)
q2
=
(
1.0
/
6.0
)
*
arithmeticMean
(
mu1
,
beta
,
theta
)
b1
=
prestrain_b1
(
rho1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho1
,
beta
,
alpha
,
theta
)
b3
=
0.0
# if gamma == '0':
# q3 = q2
# if gamma == 'infinity':
# q3 = q1
q3
=
GetMuGamma
(
beta
,
theta
,
gamma
,
mu1
,
rho1
,
InputFilePath
,
OutputFilePath
)
if
yName
==
'
q1
'
:
# TODO: Better use dictionary?...
print
(
'
q1 used
'
)
Y_Values
.
append
(
q1
)
elif
yName
==
'
q2
'
:
print
(
'
q2 used
'
)
Y_Values
.
append
(
q2
)
elif
yName
==
'
q3
'
:
print
(
'
q3 used
'
)
Y_Values
.
append
(
q3
)
elif
yName
==
'
q12
'
:
print
(
'
q12 used
'
)
Y_Values
.
append
(
q12
)
elif
yName
==
'
b1
'
:
print
(
'
b1 used
'
)
Y_Values
.
append
(
b1
)
elif
yName
==
'
b2
'
:
print
(
'
b2 used
'
)
Y_Values
.
append
(
b2
)
elif
yName
==
'
b3
'
:
print
(
'
b3 used
'
)
Y_Values
.
append
(
b3
)
elif
yName
==
'
angle
'
or
yName
==
'
type
'
or
yName
==
'
curvature
'
or
yName
==
'
MinVec
'
:
G
,
angle
,
Type
,
curvature
=
classifyMin_ana
(
alpha
,
beta
,
theta
,
q3
,
mu1
,
rho1
)
if
yName
==
'
angle
'
:
print
(
'
angle used
'
)
Y_Values
.
append
(
angle
)
if
yName
==
'
type
'
:
print
(
'
angle used
'
)
Y_Values
.
append
(
type
)
if
yName
==
'
curvature
'
:
print
(
'
angle used
'
)
Y_Values
.
append
(
curvature
)
if
yName
==
'
MinVec
'
:
print
(
'
MinVec used
'
)
Y_Values
.
append
(
G
)
print
(
"
(Output) Values of
"
+
yName
+
"
:
"
,
Y_Values
)
# idx = find_nearestIdx(Y_Values, 0)
# print(' Idx of value closest to 0', idx)
# ValueClose = Y_Values[idx]
# print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose)
#
#
#
# # Find Indices where the difference between the next one is larger than epsilon...
# jump_idx = []
# jump_xValues = []
# jump_yValues = []
# tmp = X_Values[0]
# for idx, x in enumerate(X_Values):
# print(idx, x)
# if idx > 0:
# if abs(Y_Values[idx]-Y_Values[idx-1]) > 1:
# print('jump candidate')
# jump_idx.append(idx)
# jump_xValues.append(x)
# jump_yValues.append(Y_Values[idx])
#
#
#
#
#
# print("Jump Indices", jump_idx)
# print("Jump X-values:", jump_xValues)
# print("Jump Y-values:", jump_yValues)
#
# y_plotValues = [Y_Values[0]]
# x_plotValues = [X_Values[0]]
# # y_plotValues.extend(jump_yValues)
# for i in jump_idx:
# y_plotValues.extend([Y_Values[i-1], Y_Values[i]])
# x_plotValues.extend([X_Values[i-1], X_Values[i]])
#
#
# y_plotValues.append(Y_Values[-1])
# # x_plotValues = [X_Values[0]]
# # x_plotValues.extend(jump_xValues)
# x_plotValues.append(X_Values[-1])
#
#
# print("y_plotValues:", y_plotValues)
# print("x_plotValues:", x_plotValues)
# Y_Values[np.diff(y) >= 0.5] = np.nan
#get values bigger than jump position
# gamma = infty
# x_rest = X_Values[X_Values>x_plotValues[1]]
# Y_Values = np.array(Y_Values) #convert the np array
# y_rest = Y_Values[X_Values>x_plotValues[1]]
#
#
# # gamma = 0
# x_rest = X_Values[X_Values>x_plotValues[3]]
# Y_Values = np.array(Y_Values) #convert the np array
# y_rest = Y_Values[X_Values>x_plotValues[3]]
# gamma between
# Y_Values = np.array(Y_Values) #convert the np array
# X_Values = np.array(X_Values) #convert the np array
#
# x_one = X_Values[X_Values>x_plotValues[3]]
# # ax.scatter(X_Values, Y_Values)
# y_rest = Y_Values[X_Values>x_plotValues[3]]
# ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135])
#
#
#
# y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]]
# print('X_Values:', X_Values)
# print('Y_Values:', Y_Values)
# print('x_rest:', x_rest)
# print('y_rest:', y_rest)
# print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
# --- Convert to numpy array
Y_Values
=
np
.
array
(
Y_Values
)
X_Values
=
np
.
array
(
X_Values
)
Y_arr
=
np
.
asarray
(
Y_Values
,
dtype
=
float
)
X_Values
=
np
.
asarray
(
X_Values
,
dtype
=
float
)
print
(
'
X_Values:
'
,
X_Values
)
print
(
'
Y_arr:
'
,
Y_arr
)
# ---------------- Create Plot -------------------
#--- change plot style: SEABORN
# plt.style.use("seaborn-paper")
#--- Adjust gobal matplotlib variables
# mpl.rcParams['pdf.fonttype'] = 42
# mpl.rcParams['ps.fonttype'] = 42
mpl
.
rcParams
[
'
text.usetex
'
]
=
True
mpl
.
rcParams
[
"
font.family
"
]
=
"
serif
"
mpl
.
rcParams
[
"
font.size
"
]
=
"
9
"
# plt.rc('font', family='serif', serif='Times')
# plt.rc('font', family='serif')
# # plt.rc('text', usetex=True) #also works...
# plt.rc('xtick', labelsize=8)
# plt.rc('ytick', labelsize=8)
# plt.rc('axes', labelsize=8)
#---- Scale Figure apropriately to fit tex-File Width
# width = 452.9679
# width as measured in inkscape
width
=
6.28
*
0.5
height
=
width
/
1.618
#setup canvas first
fig
=
plt
.
figure
()
#main
# fig, ax = plt.subplots()
# fig, (ax, ax2) = plt.subplots(ncols=2)
# fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot
# fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97) #TEST
# TEST
# mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1)
# fig = plt.figure(figsize=(width+0.1,height+0.1))
# mpl.rcParams['figure.figsize'] = (width,height)
# fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
# fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
# fig = plt.figure(figsize=set_size(width))
# fig = plt.subplots(1, 1, figsize=set_size(width))
# --- To create a figure half the width of your document:#
# fig = plt.figure(figsize=set_size(width, fraction=0.5))
#--- You must select the correct size of the plot in advance
# fig.set_size_inches(3.54,3.54)
ax
=
plt
.
axes
((
0.1
,
0.1
,
0.8
,
0.8
))
# ax = plt.axes((0.1,0.1,0.5,0.8))
# ax = plt.axes((0.1,0.1,1,1))
# ax = plt.axes()
# ax.spines['right'].set_visible(False)
# ax.spines['left'].set_visible(False)
# ax.spines['bottom'].set_visible(False)
# ax.spines['top'].set_visible(False)
# ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green',
# labelrotation=15)
# ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10)
# ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10)
# ax.tick_params(axis='x',which='major', direction='out',pad=3)
# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
# ax.xaxis.set_major_locator(MultipleLocator(0.05))
# ax.xaxis.set_minor_locator(MultipleLocator(0.025))
#---- print data-types
# print(ax.xaxis.get_major_locator())
# print(ax.xaxis.get_minor_locator())
# print(ax.xaxis.get_major_formatter())
# print(ax.xaxis.get_minor_formatter())
#---- Hide Ticks or Labels
# ax.yaxis.set_major_locator(plt.NullLocator())
# ax.xaxis.set_major_formatter(plt.NullFormatter())
#---- Reducing or Increasing the Number of Ticks
# ax.xaxis.set_major_locator(plt.MaxNLocator(3))
# ax.yaxis.set_major_locator(plt.MaxNLocator(3))
#----- Fancy Tick Formats
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4))
# ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
#
#
# # ax.set_yticks([0, np.pi/8, np.pi/4 ])
#
# ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
# --- manually change ticks&labels:
# ax.set_xticks([0.2,1])
# ax.set_xticklabels(['pos1','pos2'])
# ax.set_yticks([0, np.pi/8, np.pi/4 ])
# labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
# ax.set_yticklabels(labels)
# a=ax.yaxis.get_major_locator()
# b=ax.yaxis.get_major_formatter()
# c = ax.get_xticks()
# d = ax.get_xticklabels()
# print('xticks:',c)
# print('xticklabels:',d)
#
# ax.grid(True,which='major',axis='both',alpha=0.3)
# ax.plot(Y_arr[:,0], Y_arr[:,1] , 'royalblue')
print
(
'
Y_arr[:,0]:
'
,
Y_arr
[:,
0
])
print
(
'
Y_arr[:,1]:
'
,
Y_arr
[:,
1
])
ax
.
plot
(
Y_arr
[:,
0
],
Y_arr
[:,
1
]
,
'
royalblue
'
,
# data
marker
=
'
o
'
,
# each marker will be rendered as a circle
markersize
=
2
,
# marker size
markerfacecolor
=
'
orange
'
,
# marker facecolor
markeredgecolor
=
'
black
'
,
# marker edgecolor
markeredgewidth
=
0.5
,
# marker edge width
# linestyle='--', # line style will be dash line
linewidth
=
1
,
zorder
=
3
)
# line width
# plt.figure()
#--- Coordinate Axes:
ax
.
spines
.
left
.
set_position
(
'
zero
'
)
ax
.
spines
.
right
.
set_color
(
'
none
'
)
ax
.
spines
.
bottom
.
set_position
(
'
zero
'
)
ax
.
spines
.
top
.
set_color
(
'
none
'
)
ax
.
xaxis
.
set_ticks_position
(
'
bottom
'
)
ax
.
yaxis
.
set_ticks_position
(
'
left
'
)
ax
.
set
(
xlim
=
(
-
25
,
15
),
ylim
=
(
-
3
,
3
))
#-- Decorate the spins
arrow_length
=
8
# In points
# X-axis arrow
ax
.
annotate
(
'
x
'
,
xy
=
(
1
,
0
),
xycoords
=
(
'
axes fraction
'
,
'
data
'
),
xytext
=
(
arrow_length
,
0
),
textcoords
=
'
offset points
'
,
ha
=
'
left
'
,
va
=
'
center
'
,
arrowprops
=
dict
(
arrowstyle
=
'
<|-
'
,
fc
=
'
black
'
))
# Y-axis arrow
ax
.
annotate
(
'
y
'
,
xy
=
(
0
,
1
),
xycoords
=
(
'
data
'
,
'
axes fraction
'
),
xytext
=
(
0
,
arrow_length
),
textcoords
=
'
offset points
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
arrowprops
=
dict
(
arrowstyle
=
'
<|-
'
,
fc
=
'
black
'
))
# ax.scatter(Y_arr[21,0],Y_arr[21,1], s=6, marker='o', cmap=None, norm=None, facecolor = 'forestgreen',
# edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=5)
# ax.text(Y_arr[21,0]-0.25 , Y_arr[21,1]+0.15, r"$1$", size=4, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
# ax.text(Y_arr[21,0] , Y_arr[21,1], r"$1$", size=2, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5), zorder=5)
ax
.
scatter
(
Y_arr
[
21
,
0
]
,
Y_arr
[
21
,
1
],
s
=
4
,
marker
=
'
o
'
,
cmap
=
None
,
norm
=
None
,
facecolor
=
'
forestgreen
'
,
edgecolor
=
'
black
'
,
vmin
=
None
,
vmax
=
None
,
alpha
=
None
,
linewidths
=
0.5
,
zorder
=
5
)
ax
.
scatter
(
Y_arr
[
31
,
0
]
,
Y_arr
[
31
,
1
],
s
=
4
,
marker
=
'
o
'
,
cmap
=
None
,
norm
=
None
,
facecolor
=
'
forestgreen
'
,
edgecolor
=
'
black
'
,
vmin
=
None
,
vmax
=
None
,
alpha
=
None
,
linewidths
=
0.5
,
zorder
=
5
)
ax
.
scatter
(
Y_arr
[
40
,
0
]
,
Y_arr
[
40
,
1
],
s
=
4
,
marker
=
'
o
'
,
cmap
=
None
,
norm
=
None
,
facecolor
=
'
forestgreen
'
,
edgecolor
=
'
black
'
,
vmin
=
None
,
vmax
=
None
,
alpha
=
None
,
linewidths
=
0.5
,
zorder
=
5
)
ax
.
annotate
(
1
,
(
Y_arr
[
21
,
0
]
,
Y_arr
[
21
,
1
]),
xytext
=
(
Y_arr
[
21
,
0
]
-
0.35
,
Y_arr
[
21
,
1
]
+
1
),
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
),
arrowprops
=
dict
(
arrowstyle
=
"
simple
"
,
color
=
'
blue
'
,
linewidth
=
0.1
),
fontsize
=
6
)
ax
.
annotate
(
2
,
(
Y_arr
[
31
,
0
]
,
Y_arr
[
31
,
1
]),
xytext
=
(
Y_arr
[
31
,
0
]
+
4
,
Y_arr
[
31
,
1
]
-
0.08
),
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
),
arrowprops
=
dict
(
arrowstyle
=
"
simple
"
,
color
=
'
blue
'
,
linewidth
=
0.1
),
fontsize
=
6
)
ax
.
annotate
(
3
,
(
Y_arr
[
40
,
0
]
,
Y_arr
[
40
,
1
]),
xytext
=
(
Y_arr
[
40
,
0
]
-
0.35
,
Y_arr
[
40
,
1
]
+
1
),
bbox
=
dict
(
boxstyle
=
"
circle
"
,
facecolor
=
'
white
'
,
alpha
=
1.0
,
pad
=
0.1
,
linewidth
=
0.5
),
arrowprops
=
dict
(
arrowstyle
=
"
simple
"
,
color
=
'
blue
'
,
linewidth
=
0.1
),
fontsize
=
6
)
# arrowprops = dict(arrowstyle="simple",color='blue', linewidth=0.1, shrink=0.05), fontsize=4)
# f,ax=plt.subplots(1)
# plt.title(r''+ yName + '-Plot')
# plt.plot(X_Values, Y_Values,linewidth=2, '.k')
# plt.plot(X_Values, Y_Values,'.k',markersize=1)
# plt.plot(X_Values, Y_Values,'.',markersize=0.8)
# plt.plot(X_Values, Y_Values)
# ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# Gamma = '0'
# ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b')
#
# ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b')
#
# ax.plot(x_rest, y_rest, 'b')
# Gamma between
# x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093]
# ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b')
# ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b')
# ax.plot([[0,0.13606060606060608], [0, 0]] , 'b')
# ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b')
# jump_xValues[0]
# --- leave out jumps:
# ax.scatter(X_Values, Y_Values)
# # --- leave out jumps:
# if gamma == 'infinity':
# ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue')
# ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
# # ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]])
# # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]])
# ax.plot(X_Values[X_Values>0.136], Y_Values[X_Values>0.136])
# ax.plot(X_Values[X_Values<0.135], Y_Values[X_Values<0.135])
# ax.scatter(X_Values, Y_Values)
# ax.plot(X_Values, Y_Values)
# plt.plot(x_plotValues, y_plotValues,'.')
# plt.scatter(X_Values, Y_Values, alpha=0.3)
# plt.scatter(X_Values, Y_Values)
# plt.plot(X_Values, Y_Values,'.')
# plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# plt.axis([0, 6, 0, 20])
# ax.set_xlabel(r"volume fraction $\theta$", size=11)
# ax.set_ylabel(r"angle $\angle$", size=11)
# ax.set_xlabel(r"volume fraction $\theta$")
# ax.set_ylabel(r"angle $\angle$")
# ax.set_ylabel(r"$a^*$")
# plt.ylabel('$\kappa$')
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1))
# Plot every other line.. not the jumps...
# if gamma == '0':
# tmp = 1
# for idx, x in enumerate(x_plotValues):
# if idx > 0 and tmp == 1:
# # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] )
# ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue' )
# tmp = 0
# else:
# tmp = 1
# for x in jump_xValues:
# plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
# plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', label=r'$\theta_*$')
# plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.legend()
# -- SETUP LEGEND
# ax.legend(prop={'size': 11})
# ax.legend()
# ------------------ SAVE FIGURE
# tikzplotlib.save("TesTout.tex")
# plt.close()
# mpl.rcParams.update(mpl.rcParamsDefault)
# plt.savefig("graph.pdf",
# #This is simple recomendation for publication plots
# dpi=1000,
# # Plot will be occupy a maximum of available space
# bbox_inches='tight',
# )
# plt.savefig("graph.pdf")
#
# # Find transition point
# lastIdx = len(Y_Values)-1
#
# for idx, y in enumerate(Y_Values):
# if idx != lastIdx:
# if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05:
# transition_point1 = X_Values[idx+1]
# print('transition point1:', transition_point1 )
# if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01:
# transition_point2 = X_Values[idx]
# print('transition point2:', transition_point2 )
# if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01:
# transition_point3 = X_Values[idx+1]
# print('transition point3:', transition_point3 )
#
# # Add transition Points:
# if gamma == '0':
# ax.scatter([transition_point1, transition_point2],[np.pi/2,np.pi/2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
# edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
#
# ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
#
# ax.text(transition_point2+0.012 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
# else:
# ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
# edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
#
# ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
#
# ax.text(transition_point2 +0.015 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
#
# ax.text(transition_point3 +0.005 , 0+0.06, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
fig
.
set_size_inches
(
width
,
height
)
fig
.
savefig
(
'
Plot-aStar_elliptic.pdf
'
)
# tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm')
# tikz_save('fig.tikz',
# figureheight = '\\figureheight',
# figurewidth = '\\figurewidth')
# ----------------------------------------
plt
.
show
()
# #---------------------------------------------------------------
This diff is collapsed.
Click to expand it.
src/Plot_aStar_hyperbolic.py
0 → 100644
+
770
−
0
View file @
9f8437ba
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment