Skip to content
Snippets Groups Projects
Commit 9f8437ba authored by Klaus Böhnlein's avatar Klaus Böhnlein
Browse files

Add plos for a_star

parent e99ca88d
No related branches found
No related tags found
No related merge requests found
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import math
import os
import subprocess
import fileinput
import re
import matlab.engine
from HelperFunctions import *
from ClassifyMin import *
import matplotlib.ticker as tickers
import matplotlib as mpl
from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
import pandas as pd
# import tikzplotlib
# # from pylab import *
# from tikzplotlib import save as tikz_save
# Needed ?
mpl.use('pdf')
# from subprocess import Popen, PIPE
#import sys
###################### makePlot.py #########################
# Generalized Plot-Script giving the option to define
# quantity of interest and the parameter it depends on
# to create a plot
#
# Input: Define y & x for "x-y plot" as Strings
# - Run the 'Cell-Problem' for the different Parameter-Points
# (alternatively run 'Compute_MuGamma' if quantity of interest
# is q3=muGamma for a significant Speedup)
###########################################################
# figsize argument takes inputs in inches
# and we have the width of our document in pts.
# To set the figure size we construct a function
# to convert from pts to inches and to determine
# an aesthetic figure height using the golden ratio:
# def set_size(width, fraction=1):
# """Set figure dimensions to avoid scaling in LaTeX.
#
# Parameters
# ----------
# width: float
# Document textwidth or columnwidth in pts
# fraction: float, optional
# Fraction of the width which you wish the figure to occupy
#
# Returns
# -------
# fig_dim: tuple
# Dimensions of figure in inches
# """
# # Width of figure (in pts)
# fig_width_pt = width * fraction
#
# # Convert from pt to inches
# inches_per_pt = 1 / 72.27
#
# # Golden ratio to set aesthetic figure height
# # https://disq.us/p/2940ij3
# golden_ratio = (5**.5 - 1) / 2
#
# # Figure width in inches
# fig_width_in = fig_width_pt * inches_per_pt
# # Figure height in inches
# fig_height_in = fig_width_in * golden_ratio
#
# fig_dim = (fig_width_in, fig_height_in)
#
# return fig_dim
#
def format_func(value, tick_number):
# # find number of multiples of pi/2
# N = int(np.round(2 * value / np.pi))
# if N == 0:
# return "0"
# elif N == 1:
# return r"$\pi/2$"
# elif N == 2:
# return r"$\pi$"
# elif N % 2 > 0:
# return r"${0}\pi/2$".format(N)
# else:
# return r"${0}\pi$".format(N // 2)
# find number of multiples of pi/2
N = int(np.round(4 * value / np.pi))
if N == 0:
return "0"
elif N == 1:
return r"$\pi/4$"
elif N == 2:
return r"$\pi/2$"
elif N % 2 > 0:
return r"${0}\pi/2$".format(N)
else:
return r"${0}\pi$".format(N // 2)
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def find_nearestIdx(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
# TODO
# - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3
# - Also Add option to plot Minimization Output
# ----- Setup Paths -----
# InputFile = "/inputs/cellsolver.parset"
# OutputFile = "/outputs/output.txt"
InputFile = "/inputs/computeMuGamma.parset"
OutputFile = "/outputs/outputMuGamma.txt"
# path = os.getcwd()
# InputFilePath = os.getcwd()+InputFile
# OutputFilePath = os.getcwd()+OutputFile
# --------- Run from src folder:
path_parent = os.path.dirname(os.getcwd())
os.chdir(path_parent)
path = os.getcwd()
print(path)
InputFilePath = os.getcwd()+InputFile
OutputFilePath = os.getcwd()+OutputFile
print("InputFilepath: ", InputFilePath)
print("OutputFilepath: ", OutputFilePath)
print("Path: ", path)
#---------------------------------------------------------------
print('---- Input parameters: -----')
mu1 = 10.0
# lambda1 = 10.0
rho1 = 1.0
alpha = 5.0
beta = 10.0
theta = 1.0/4.0
lambda1 = 0.0
gamma = 1.0/4.0
gamma = 'infinity' #Elliptic Setting
# gamma = '0' #Hyperbolic Setting
# gamma = 0.5
print('mu1: ', mu1)
print('rho1: ', rho1)
print('alpha: ', alpha)
print('beta: ', beta)
print('theta: ', theta)
print('gamma:', gamma)
print('----------------------------')
# TODO? : Ask User for Input ...
# function = input("Enter value you want to plot (y-value):\n")
# print(f'You entered {function}')
# parameter = input("Enter Parameter this value depends on (x-value) :\n")
# print(f'You entered {parameter}')
# Add Option to change NumberOfElements used for computation of Cell-Problem
# --- Define Quantity of interest:
# Options: 'q1', 'q2', 'q3', 'q12' ,'q21', 'q31', 'q13' , 'q23', 'q32' , 'b1', 'b2' ,'b3'
# TODO: EXTRA (MInimization Output) 'Minimizer (norm?)' 'angle', 'type', 'curvature'
# yName = 'q12'
# # yName = 'b1'
# yName = 'q3'
# yName = 'angle'
# yName = 'curvature'
yName = 'MinVec'
# --- Define Parameter this function/quantity depends on:
# Options: mu1 ,lambda1, rho1 , alpha, beta, theta, gamma
# xName = 'theta'
# xName = 'gamma'
# xName = 'lambda1'
xName = 'theta'
# --- define Interval of x-va1ues:
# xmin = 0.15
xmin = 0.01
xmax = 0.41
# xmin = 0.18 #Achtung bei manchen werten von theta ist integration in ComputeMuGama/Cell_problem schlecht!
# xmax = 0.41 # Materialfunktion muss von Gitter aufgelöst werden
# müssen vielfache von (1/2^i) sein wobei i integer
# xmin = 0.18 #Achtung bei manchen werten von theta ist integration in ComputeMuGama/Cell_problem schlecht!
# xmax = 0.23
# xmin = 0.01
# xmax = 3.0
numPoints = 70
# numPoints = 50
X_Values = np.linspace(xmin, xmax, num=numPoints)
print(X_Values)
Y_Values = []
for theta in X_Values:
print('Situation of Lemma1.4')
q12 = 0.0
q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
b1 = prestrain_b1(rho1, beta, alpha,theta)
b2 = prestrain_b2(rho1, beta, alpha,theta)
b3 = 0.0
# if gamma == '0':
# q3 = q2
# if gamma == 'infinity':
# q3 = q1
q3 = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath)
if yName == 'q1': # TODO: Better use dictionary?...
print('q1 used')
Y_Values.append(q1)
elif yName =='q2':
print('q2 used')
Y_Values.append(q2)
elif yName =='q3':
print('q3 used')
Y_Values.append(q3)
elif yName =='q12':
print('q12 used')
Y_Values.append(q12)
elif yName =='b1':
print('b1 used')
Y_Values.append(b1)
elif yName =='b2':
print('b2 used')
Y_Values.append(b2)
elif yName =='b3':
print('b3 used')
Y_Values.append(b3)
elif yName == 'angle' or yName =='type' or yName =='curvature' or yName =='MinVec':
G, angle, Type, curvature = classifyMin_ana(alpha,beta,theta, q3, mu1, rho1)
if yName =='angle':
print('angle used')
Y_Values.append(angle)
if yName =='type':
print('angle used')
Y_Values.append(type)
if yName =='curvature':
print('angle used')
Y_Values.append(curvature)
if yName =='MinVec':
print('MinVec used')
Y_Values.append(G)
print("(Output) Values of " + yName + ": ", Y_Values)
# idx = find_nearestIdx(Y_Values, 0)
# print(' Idx of value closest to 0', idx)
# ValueClose = Y_Values[idx]
# print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose)
#
#
#
# # Find Indices where the difference between the next one is larger than epsilon...
# jump_idx = []
# jump_xValues = []
# jump_yValues = []
# tmp = X_Values[0]
# for idx, x in enumerate(X_Values):
# print(idx, x)
# if idx > 0:
# if abs(Y_Values[idx]-Y_Values[idx-1]) > 1:
# print('jump candidate')
# jump_idx.append(idx)
# jump_xValues.append(x)
# jump_yValues.append(Y_Values[idx])
#
#
#
#
#
# print("Jump Indices", jump_idx)
# print("Jump X-values:", jump_xValues)
# print("Jump Y-values:", jump_yValues)
#
# y_plotValues = [Y_Values[0]]
# x_plotValues = [X_Values[0]]
# # y_plotValues.extend(jump_yValues)
# for i in jump_idx:
# y_plotValues.extend([Y_Values[i-1], Y_Values[i]])
# x_plotValues.extend([X_Values[i-1], X_Values[i]])
#
#
# y_plotValues.append(Y_Values[-1])
# # x_plotValues = [X_Values[0]]
# # x_plotValues.extend(jump_xValues)
# x_plotValues.append(X_Values[-1])
#
#
# print("y_plotValues:", y_plotValues)
# print("x_plotValues:", x_plotValues)
# Y_Values[np.diff(y) >= 0.5] = np.nan
#get values bigger than jump position
# gamma = infty
# x_rest = X_Values[X_Values>x_plotValues[1]]
# Y_Values = np.array(Y_Values) #convert the np array
# y_rest = Y_Values[X_Values>x_plotValues[1]]
#
#
# # gamma = 0
# x_rest = X_Values[X_Values>x_plotValues[3]]
# Y_Values = np.array(Y_Values) #convert the np array
# y_rest = Y_Values[X_Values>x_plotValues[3]]
# gamma between
# Y_Values = np.array(Y_Values) #convert the np array
# X_Values = np.array(X_Values) #convert the np array
#
# x_one = X_Values[X_Values>x_plotValues[3]]
# # ax.scatter(X_Values, Y_Values)
# y_rest = Y_Values[X_Values>x_plotValues[3]]
# ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135])
#
#
#
# y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]]
# print('X_Values:', X_Values)
# print('Y_Values:', Y_Values)
# print('x_rest:', x_rest)
# print('y_rest:', y_rest)
# print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
# --- Convert to numpy array
Y_Values = np.array(Y_Values)
X_Values = np.array(X_Values)
Y_arr = np.asarray(Y_Values, dtype=float)
X_Values = np.asarray(X_Values, dtype=float)
print('X_Values:', X_Values)
print('Y_arr:', Y_arr)
# ---------------- Create Plot -------------------
#--- change plot style: SEABORN
# plt.style.use("seaborn-paper")
#--- Adjust gobal matplotlib variables
# mpl.rcParams['pdf.fonttype'] = 42
# mpl.rcParams['ps.fonttype'] = 42
mpl.rcParams['text.usetex'] = True
mpl.rcParams["font.family"] = "serif"
mpl.rcParams["font.size"] = "9"
# plt.rc('font', family='serif', serif='Times')
# plt.rc('font', family='serif')
# # plt.rc('text', usetex=True) #also works...
# plt.rc('xtick', labelsize=8)
# plt.rc('ytick', labelsize=8)
# plt.rc('axes', labelsize=8)
#---- Scale Figure apropriately to fit tex-File Width
# width = 452.9679
# width as measured in inkscape
width = 6.28 *0.5
height = width / 1.618
#setup canvas first
fig = plt.figure() #main
# fig, ax = plt.subplots()
# fig, (ax, ax2) = plt.subplots(ncols=2)
# fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot
# fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97) #TEST
# TEST
# mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1)
# fig = plt.figure(figsize=(width+0.1,height+0.1))
# mpl.rcParams['figure.figsize'] = (width,height)
# fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
# fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height
# fig = plt.figure(figsize=set_size(width))
# fig = plt.subplots(1, 1, figsize=set_size(width))
# --- To create a figure half the width of your document:#
# fig = plt.figure(figsize=set_size(width, fraction=0.5))
#--- You must select the correct size of the plot in advance
# fig.set_size_inches(3.54,3.54)
ax = plt.axes((0.1,0.1,0.8,0.8))
# ax = plt.axes((0.1,0.1,0.5,0.8))
# ax = plt.axes((0.1,0.1,1,1))
# ax = plt.axes()
# ax.spines['right'].set_visible(False)
# ax.spines['left'].set_visible(False)
# ax.spines['bottom'].set_visible(False)
# ax.spines['top'].set_visible(False)
# ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green',
# labelrotation=15)
# ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10)
# ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10)
# ax.tick_params(axis='x',which='major', direction='out',pad=3)
# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3)
# ax.xaxis.set_major_locator(MultipleLocator(0.05))
# ax.xaxis.set_minor_locator(MultipleLocator(0.025))
#---- print data-types
# print(ax.xaxis.get_major_locator())
# print(ax.xaxis.get_minor_locator())
# print(ax.xaxis.get_major_formatter())
# print(ax.xaxis.get_minor_formatter())
#---- Hide Ticks or Labels
# ax.yaxis.set_major_locator(plt.NullLocator())
# ax.xaxis.set_major_formatter(plt.NullFormatter())
#---- Reducing or Increasing the Number of Ticks
# ax.xaxis.set_major_locator(plt.MaxNLocator(3))
# ax.yaxis.set_major_locator(plt.MaxNLocator(3))
#----- Fancy Tick Formats
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4))
# ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
#
#
# # ax.set_yticks([0, np.pi/8, np.pi/4 ])
#
# ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
# --- manually change ticks&labels:
# ax.set_xticks([0.2,1])
# ax.set_xticklabels(['pos1','pos2'])
# ax.set_yticks([0, np.pi/8, np.pi/4 ])
# labels = ['$0$',r'$\pi/8$', r'$\pi/4$']
# ax.set_yticklabels(labels)
# a=ax.yaxis.get_major_locator()
# b=ax.yaxis.get_major_formatter()
# c = ax.get_xticks()
# d = ax.get_xticklabels()
# print('xticks:',c)
# print('xticklabels:',d)
#
# ax.grid(True,which='major',axis='both',alpha=0.3)
# ax.plot(Y_arr[:,0], Y_arr[:,1] , 'royalblue')
print('Y_arr[:,0]:', Y_arr[:,0])
print('Y_arr[:,1]:', Y_arr[:,1])
ax.plot(Y_arr[:,0], Y_arr[:,1] , 'royalblue', # data
marker='o', # each marker will be rendered as a circle
markersize=2, # marker size
markerfacecolor='orange', # marker facecolor
markeredgecolor='black', # marker edgecolor
markeredgewidth=0.5, # marker edge width
# linestyle='--', # line style will be dash line
linewidth=1,
zorder = 3) # line width
# plt.figure()
#--- Coordinate Axes:
ax.spines.left.set_position('zero')
ax.spines.right.set_color('none')
ax.spines.bottom.set_position('zero')
ax.spines.top.set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.set(xlim=(-25, 15), ylim=(-3, 3))
#-- Decorate the spins
arrow_length = 8 # In points
# X-axis arrow
ax.annotate('x', xy=(1, 0), xycoords=('axes fraction', 'data'),
xytext=(arrow_length, 0), textcoords='offset points',
ha='left', va='center',
arrowprops=dict(arrowstyle='<|-', fc='black'))
# Y-axis arrow
ax.annotate('y', xy=(0, 1), xycoords=('data', 'axes fraction'),
xytext=(0, arrow_length), textcoords='offset points',
ha='center', va='bottom',
arrowprops=dict(arrowstyle='<|-', fc='black'))
# ax.scatter(Y_arr[21,0],Y_arr[21,1], s=6, marker='o', cmap=None, norm=None, facecolor = 'forestgreen',
# edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=5)
# ax.text(Y_arr[21,0]-0.25 , Y_arr[21,1]+0.15, r"$1$", size=4, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5))
# ax.text(Y_arr[21,0] , Y_arr[21,1], r"$1$", size=2, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5), zorder=5)
ax.scatter(Y_arr[21,0] , Y_arr[21,1], s=4, marker='o', cmap=None, norm=None, facecolor = 'forestgreen',
edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=0.5, zorder=5)
ax.scatter(Y_arr[31,0] , Y_arr[31,1], s=4, marker='o', cmap=None, norm=None, facecolor = 'forestgreen',
edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=0.5, zorder=5)
ax.scatter(Y_arr[40,0] , Y_arr[40,1], s=4, marker='o', cmap=None, norm=None, facecolor = 'forestgreen',
edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=0.5, zorder=5)
ax.annotate( 1 , (Y_arr[21,0] , Y_arr[21,1]), xytext=(Y_arr[21,0]-0.35 , Y_arr[21,1]+1),
bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5),
arrowprops = dict(arrowstyle="simple",color='blue', linewidth=0.1), fontsize=6)
ax.annotate( 2 , (Y_arr[31,0] , Y_arr[31,1]), xytext=(Y_arr[31,0]+4 , Y_arr[31,1]-0.08),
bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5),
arrowprops = dict(arrowstyle="simple",color='blue', linewidth=0.1), fontsize=6)
ax.annotate( 3 , (Y_arr[40,0] , Y_arr[40,1]), xytext=(Y_arr[40,0]-0.35 , Y_arr[40,1]+1),
bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5),
arrowprops = dict(arrowstyle="simple",color='blue', linewidth=0.1), fontsize=6)
# arrowprops = dict(arrowstyle="simple",color='blue', linewidth=0.1, shrink=0.05), fontsize=4)
# f,ax=plt.subplots(1)
# plt.title(r''+ yName + '-Plot')
# plt.plot(X_Values, Y_Values,linewidth=2, '.k')
# plt.plot(X_Values, Y_Values,'.k',markersize=1)
# plt.plot(X_Values, Y_Values,'.',markersize=0.8)
# plt.plot(X_Values, Y_Values)
# ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# Gamma = '0'
# ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b')
#
# ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b')
#
# ax.plot(x_rest, y_rest, 'b')
# Gamma between
# x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093]
# ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b')
# ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b')
# ax.plot([[0,0.13606060606060608], [0, 0]] , 'b')
# ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b')
# jump_xValues[0]
# --- leave out jumps:
# ax.scatter(X_Values, Y_Values)
# # --- leave out jumps:
# if gamma == 'infinity':
# ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue')
# ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue')
# # ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]])
# # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]])
# ax.plot(X_Values[X_Values>0.136], Y_Values[X_Values>0.136])
# ax.plot(X_Values[X_Values<0.135], Y_Values[X_Values<0.135])
# ax.scatter(X_Values, Y_Values)
# ax.plot(X_Values, Y_Values)
# plt.plot(x_plotValues, y_plotValues,'.')
# plt.scatter(X_Values, Y_Values, alpha=0.3)
# plt.scatter(X_Values, Y_Values)
# plt.plot(X_Values, Y_Values,'.')
# plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# plt.axis([0, 6, 0, 20])
# ax.set_xlabel(r"volume fraction $\theta$", size=11)
# ax.set_ylabel(r"angle $\angle$", size=11)
# ax.set_xlabel(r"volume fraction $\theta$")
# ax.set_ylabel(r"angle $\angle$")
# ax.set_ylabel(r"$a^*$")
# plt.ylabel('$\kappa$')
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1))
# Plot every other line.. not the jumps...
# if gamma == '0':
# tmp = 1
# for idx, x in enumerate(x_plotValues):
# if idx > 0 and tmp == 1:
# # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] )
# ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue' )
# tmp = 0
# else:
# tmp = 1
# for x in jump_xValues:
# plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1)
# plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', label=r'$\theta_*$')
# plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed')
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.legend()
# -- SETUP LEGEND
# ax.legend(prop={'size': 11})
# ax.legend()
# ------------------ SAVE FIGURE
# tikzplotlib.save("TesTout.tex")
# plt.close()
# mpl.rcParams.update(mpl.rcParamsDefault)
# plt.savefig("graph.pdf",
# #This is simple recomendation for publication plots
# dpi=1000,
# # Plot will be occupy a maximum of available space
# bbox_inches='tight',
# )
# plt.savefig("graph.pdf")
#
# # Find transition point
# lastIdx = len(Y_Values)-1
#
# for idx, y in enumerate(Y_Values):
# if idx != lastIdx:
# if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05:
# transition_point1 = X_Values[idx+1]
# print('transition point1:', transition_point1 )
# if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01:
# transition_point2 = X_Values[idx]
# print('transition point2:', transition_point2 )
# if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01:
# transition_point3 = X_Values[idx+1]
# print('transition point3:', transition_point3 )
#
# # Add transition Points:
# if gamma == '0':
# ax.scatter([transition_point1, transition_point2],[np.pi/2,np.pi/2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
# edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
#
# ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
#
# ax.text(transition_point2+0.012 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
# else:
# ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black',
# edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3)
#
# ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
#
# ax.text(transition_point2 +0.015 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
#
# ax.text(transition_point3 +0.005 , 0+0.06, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)
# )
fig.set_size_inches(width, height)
fig.savefig('Plot-aStar_elliptic.pdf')
# tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm')
# tikz_save('fig.tikz',
# figureheight = '\\figureheight',
# figurewidth = '\\figurewidth')
# ----------------------------------------
plt.show()
# #---------------------------------------------------------------
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment