Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
cb35f64b
Commit
cb35f64b
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Add Contour-Plots for angle
parent
48792f56
No related branches found
No related tags found
No related merge requests found
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/PhaseDiagram_Contour.py
+481
-0
481 additions, 0 deletions
src/PhaseDiagram_Contour.py
src/PhaseDiagram_ContourSubPlots.py
+529
-0
529 additions, 0 deletions
src/PhaseDiagram_ContourSubPlots.py
with
1010 additions
and
0 deletions
src/PhaseDiagram_Contour.py
0 → 100644
+
481
−
0
View file @
cb35f64b
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
sympy
as
sym
import
math
import
os
import
subprocess
import
fileinput
import
re
import
matlab.engine
import
sys
from
ClassifyMin
import
*
from
HelperFunctions
import
*
# from CellScript import *
from
mpl_toolkits.mplot3d
import
Axes3D
import
matplotlib.cm
as
cm
from
vtk.util
import
numpy_support
from
pyevtk.hl
import
gridToVTK
from
matplotlib.ticker
import
MultipleLocator
,
FormatStrFormatter
,
MaxNLocator
import
time
# print(sys.executable)
# --------------------------------------------------------------------
# START :
# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1
#
# -Option 1 : (Case lambda = 0 => q12 = 0)
# compute q1,q2,b1,b2 from Formula
# Option 1.1 :
# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty})
# Option 1.2 :
# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem)
# -Option 2 :
# compute Q_hom & B_eff by running 'Cell-Problem'
#
# -> CLASSIFY ...
#
# OUTPUT: Minimizer G, angle , type, curvature
# -----------------------------------------------------------------------
#
#
# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset",
# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ):
# # ------------------------------------ get mu_gamma ------------------------------
# # ---Scenario 1.1: extreme regimes
# if gamma == '0':
# print('extreme regime: gamma = 0')
# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
# print("mu_gamma:", mu_gamma)
# elif gamma == 'infinity':
# print('extreme regime: gamma = infinity')
# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1
# print("mu_gamma:", mu_gamma)
# else:
# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# # print("Run computeMuGamma for Gamma = ", gamma)
# with open(InputFilePath, 'r') as file:
# filedata = file.read()
# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
# f = open(InputFilePath,'w')
# f.write(filedata)
# f.close()
# # --- Run Cell-Problem
#
# # Check Time
# # t = time.time()
# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Cell-Problem_muGama -> faster
# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Compute_muGamma (2D Problem much much faster)
#
# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
# capture_output=True, text=True)
# # print('elapsed time:', time.time() - t)
#
# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
# with open(OutputFilePath, 'r') as file:
# output = file.read()
# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
# mu_gamma = float(s[0])
# # print("mu_gamma:", mu_gammaValue)
# # --------------------------------------------------------------------------------------
# return mu_gamma
#
# ----------- SETUP PATHS
# InputFile = "/inputs/cellsolver.parset"
# OutputFile = "/outputs/output.txt"
InputFile
=
"
/inputs/computeMuGamma.parset
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
# --------- Run from src folder:
path_parent
=
os
.
path
.
dirname
(
os
.
getcwd
())
os
.
chdir
(
path_parent
)
path
=
os
.
getcwd
()
print
(
path
)
InputFilePath
=
os
.
getcwd
()
+
InputFile
OutputFilePath
=
os
.
getcwd
()
+
OutputFile
print
(
"
InputFilepath:
"
,
InputFilePath
)
print
(
"
OutputFilepath:
"
,
OutputFilePath
)
print
(
"
Path:
"
,
path
)
# -------------------------- Input Parameters --------------------
# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma
mu1
=
1.0
rho1
=
1.0
alpha
=
2.0
beta
=
2.0
# beta = 5.0
theta
=
1.0
/
4.0
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
gamma
=
'
0
'
# gamma = 'infinity'
# gamma = 0.5
# gamma = 0.25
# gamma = 1.0
# gamma = 5.0
#added
# lambda1 = 10.0
lambda1
=
0.0
#Test:
# rho1 = -1.0
print
(
'
---- Input parameters: -----
'
)
print
(
'
mu1:
'
,
mu1
)
print
(
'
rho1:
'
,
rho1
)
print
(
'
alpha:
'
,
alpha
)
print
(
'
beta:
'
,
beta
)
print
(
'
theta:
'
,
theta
)
print
(
'
gamma:
'
,
gamma
)
print
(
'
lambda1:
'
,
lambda1
)
print
(
'
----------------------------
'
)
# ----------------------------------------------------------------
#
# gamma_min = 0.5
# gamma_max = 1.0
#
# # gamma_min = 1
# # gamma_max = 1
# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3)
# # #
# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta...
# print('(Input) Gamma_Values:', Gamma_Values)
print
(
'
type of gamma:
'
,
type
(
gamma
))
# # #
# Gamma_Values = ['0', 'infinity']
Gamma_Values
=
[
'
infinity
'
]
Gamma_Values
=
[
'
0
'
]
print
(
'
(Input) Gamma_Values:
'
,
Gamma_Values
)
for
gamma
in
Gamma_Values
:
print
(
'
Run for gamma =
'
,
gamma
)
print
(
'
type of gamma:
'
,
type
(
gamma
))
# muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath)
# # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1)
# print('Test MuGamma:', muGamma)
# ------- Options --------
# print_Cases = True
# print_Output = True
#TODO
# generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case)
generalCase
=
False
# make_3D_plot = True
# make_3D_PhaseDiagram = True
make_2D_plot
=
False
make_2D_PhaseDiagram
=
False
make_3D_plot
=
False
make_3D_PhaseDiagram
=
False
make_2D_plot
=
True
make_2D_PhaseDiagram
=
True
#
# --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 ---
# q1 = harmonicMean(mu1, beta, theta)
# q2 = arithmeticMean(mu1, beta, theta)
# --- Set q12
# q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output
# b1 = prestrain_b1(rho1, beta, alpha, theta)
# b2 = prestrain_b2(rho1, beta, alpha, theta)
#
# print('---- Input parameters: -----')
# print('mu1: ', mu1)
# print('rho1: ', rho1)
# print('alpha: ', alpha)
# print('beta: ', beta)
# print('theta: ', theta)
# print("q1: ", q1)
# print("q2: ", q2)
# print("mu_gamma: ", mu_gamma)
# print("q12: ", q12)
# print("b1: ", b1)
# print("b2: ", b2)
# print('----------------------------')
# print("machine epsilon", sys.float_info.epsilon)
# G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output)
# Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2)
# print("Test", Test)
# ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------
# SamplePoints_3D = 10 # Number of sample points in each direction
# SamplePoints_2D = 10 # Number of sample points in each direction
SamplePoints_3D
=
300
# Number of sample points in each direction
# SamplePoints_3D = 150 # Number of sample points in each direction
# SamplePoints_3D = 100 # Number of sample points in each direction
# SamplePoints_3D = 200 # Number of sample points in each direction
# SamplePoints_3D = 400 # Number of sample points in each direction
# SamplePoints_2D = 7500 # Number of sample points in each direction
# SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction
# SamplePoints_2D = 400 # 4000 # Number of sample points in each direction
# SamplePoints_2D = 500 # 4000 # Number of sample points in each direction
# SamplePoints_2D = 100 # 4000 # Number of sample points in each direction
# SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction
SamplePoints_2D
=
1000
# 4000 # Number of sample points in each direction
if
make_3D_PhaseDiagram
:
alphas_
=
np
.
linspace
(
-
20
,
20
,
SamplePoints_3D
)
# alphas_ = np.linspace(-10, 10, SamplePoints_3D)
# betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range
# betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range
# betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part
betas_
=
np
.
linspace
(
1.01
,
40.01
,
SamplePoints_3D
)
#TEST !!!!! For Beta <1 weird tings happen...
thetas_
=
np
.
linspace
(
0.01
,
0.99
,
SamplePoints_3D
)
# TEST
# alphas_ = np.linspace(-2, 2, SamplePoints_3D)
# betas_ = np.linspace(1.01,10.01,SamplePoints_3D)
# print('betas:', betas_)
# TEST :
# alphas_ = np.linspace(-40, 40, SamplePoints_3D)
# betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range
# print('type of alphas', type(alphas_))
# print('Test:', type(np.array([mu_gamma])) )
alphas
,
betas
,
thetas
=
np
.
meshgrid
(
alphas_
,
betas_
,
thetas_
,
indexing
=
'
ij
'
)
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
# Get MuGamma values ...
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
muGammas
=
GetMuGammaVec
(
betas
,
thetas
,
gamma
,
mu1
,
rho1
)
# Classify Minimizers....
G
,
angles
,
Types
,
curvature
=
classifyMin_anaVec
(
alphas
,
betas
,
thetas
,
muGammas
,
mu1
,
rho1
)
# Sets q12 to zero!!!
# G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True)
# print('size of G:', G.shape)
# print('G:', G)
# Option to print angles
# print('angles:', angles)
# Out = classifyMin_anaVec(alphas,betas,thetas)
# T = Out[2]
# --- Write to VTK
GammaString
=
str
(
gamma
)
VTKOutputName
=
"
outputs/PhaseDiagram3D
"
+
"
Gamma
"
+
GammaString
gridToVTK
(
VTKOutputName
,
alphas
,
betas
,
thetas
,
pointData
=
{
'
Type
'
:
Types
,
'
angles
'
:
angles
,
'
curvature
'
:
curvature
}
)
print
(
'
Written to VTK-File:
'
,
VTKOutputName
)
if
make_2D_PhaseDiagram
:
# alphas_ = np.linspace(-20, 20, SamplePoints_2D)
# alphas_ = np.linspace(0, 1, SamplePoints_2D)
thetas_
=
np
.
linspace
(
0.01
,
0.99
,
SamplePoints_2D
)
alphas_
=
np
.
linspace
(
-
5
,
5
,
SamplePoints_2D
)
# alphas_ = np.linspace(-5, 15, SamplePoints_2D)
# thetas_ = np.linspace(0.05,0.25,SamplePoints_2D)
# good range:
# alphas_ = np.linspace(9, 10, SamplePoints_2D)
# thetas_ = np.linspace(0.075,0.14,SamplePoints_2D)
# range used:
# alphas_ = np.linspace(8, 10, SamplePoints_2D)
# thetas_ = np.linspace(0.05,0.16,SamplePoints_2D)
# alphas_ = np.linspace(8, 12, SamplePoints_2D)
# thetas_ = np.linspace(0.05,0.2,SamplePoints_2D)
# betas_ = np.linspace(0.01,40.01,1)
#fix to one value:
betas_
=
2.0
;
# betas_ = 10.0;
# betas_ = 5.0;
# betas_ = 0.5;
#intermediate Values
# alphas_ = np.linspace(-2, 1, SamplePoints_2D)
# thetas_ = np.linspace(0.4,0.6,SamplePoints_2D)
# betas_ = 10.0;
# TEST
# alphas_ = np.linspace(-8, 8, SamplePoints_2D)
# thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
# betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 !
# betas_ = 0.9;
# betas_ = 0.5; #TEST!!!
# alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij')
betas
=
betas_
alphas
,
thetas
=
np
.
meshgrid
(
alphas_
,
thetas_
,
indexing
=
'
ij
'
)
if
generalCase
:
classifyMin_matVec
=
np
.
vectorize
(
classifyMin_mat
)
GetCellOutputVec
=
np
.
vectorize
(
GetCellOutput
,
otypes
=
[
np
.
ndarray
,
np
.
ndarray
])
Q
,
B
=
GetCellOutputVec
(
alphas
,
betas
,
thetas
,
gamma
,
mu1
,
rho1
,
lambda1
,
InputFilePath
,
OutputFilePath
)
# print('type of Q:', type(Q))
# print('Q:', Q)
G
,
angles
,
Types
,
curvature
=
classifyMin_matVec
(
Q
,
B
)
else
:
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
# muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
# G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!!
muGammas
=
GetMuGammaVec
(
betas
,
thetas
,
gamma
,
mu1
,
rho1
,
InputFilePath
,
OutputFilePath
)
G
,
angles
,
Types
,
curvature
=
classifyMin_anaVec
(
alphas
,
betas
,
thetas
,
muGammas
,
mu1
,
rho1
)
# Sets q12 to zero!!!
# print('size of G:', G.shape)
# print('G:', G)
# print('Types:', Types)
# Out = classifyMin_anaVec(alphas,betas,thetas)
# T = Out[2]
# --- Write to VTK
# VTKOutputName = + path + "./PhaseDiagram2DNEW"
print
(
'
angles:
'
,
angles
)
# GammaString = str(gamma)
# VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString
# gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} )
# print('Written to VTK-File:', VTKOutputName )
# --- Make 3D Scatter plot
if
(
make_3D_plot
or
make_2D_plot
):
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# colors = cm.plasma(Types)
colors
=
cm
.
coolwarm
(
angles
)
width
=
6.28
height
=
width
/
1.618
# height = width / 2.5
fig
,
ax
=
plt
.
subplots
()
# ax = plt.axes((0.15,0.21 ,0.8,0.75))
# if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat)
# if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat)
#
# if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat)
# if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat)
# pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm')
# # ax.colorbar()
# CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed)
# # CS = ax.contour(alphas, thetas, angles,6, colors='k')
# ax.clabel(CS, inline=True, fontsize=7.5)
# # ax.set_title('Simplest default with labels')
if
gamma
==
'
0
'
:
CS
=
ax
.
contourf
(
alphas
,
thetas
,
angles
,
10
,
cmap
=
plt
.
cm
.
coolwarm
)
# CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu')
CS2
=
ax
.
contour
(
CS
,
levels
=
CS
.
levels
[::
2
],
colors
=
'
black
'
,
inline
=
True
,
linewidths
=
(
0.5
,))
# ax.clabel(CS2, inline=True, fontsize=9, colors='black')
# ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8)
manual_locations
=
[
(
-
0.5
,
0.3
),
(
-
0.7
,
0.4
),
(
-
0.8
,
0.5
),
(
-
0.9
,
0.6
),
(
-
1
,
0.7
)]
# ax.clabel(CS2, inline=True, fontsize=6, colors='black', manual=manual_locations)
# ax.clabel(CS2, inline=True, fontsize=6, colors='black')
# ax.clabel(CS2, CS2.levels, inline=True, fontsize=10)
# ax.clabel(CS, fontsize=5, colors='black')
# cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
cbar
=
fig
.
colorbar
(
CS
,
ticks
=
[
0
,
np
.
pi
/
2
])
cbar
.
ax
.
set_yticklabels
([
'
$0$
'
,
r
'
$\pi/2$
'
])
cbar
.
ax
.
set_title
(
r
'
angle $\alpha$
'
)
if
gamma
==
'
infinity
'
:
CS
=
ax
.
contourf
(
alphas
,
thetas
,
angles
,
10
,
cmap
=
plt
.
cm
.
coolwarm
)
# CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu')
CS2
=
ax
.
contour
(
CS
,
levels
=
CS
.
levels
[::
2
],
colors
=
'
black
'
,
inline
=
True
,
linewidths
=
(
0.5
,))
# ax.clabel(CS2, inline=True, fontsize=9, colors='black')
# ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8)
manual_locations
=
[
(
-
0.5
,
0.3
),
(
-
0.7
,
0.4
),
(
-
0.8
,
0.5
),
(
-
0.9
,
0.6
),
(
-
1
,
0.7
)]
ax
.
clabel
(
CS2
,
inline
=
True
,
fontsize
=
6
,
colors
=
'
black
'
,
manual
=
manual_locations
)
# ax.clabel(CS2, CS2.levels, inline=True, fontsize=10)
# ax.clabel(CS, fontsize=5, colors='black')
# cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
cbar
=
fig
.
colorbar
(
CS
,
ticks
=
[
0
,
np
.
pi
/
8
,
np
.
pi
/
4
,
3
*
np
.
pi
/
8
,
np
.
pi
/
2
])
cbar
.
ax
.
set_yticklabels
([
'
$0$
'
,
r
'
$\pi/8$
'
,
r
'
$\pi/4$
'
,
r
'
$3\pi/8$
'
,
r
'
$\pi/2$
'
])
cbar
.
ax
.
set_title
(
r
'
angle $\alpha$
'
)
# cbar=plt.colorbar(pnt3d)
# cbar.set_label("Values (units)")
# plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$')
ax
.
set_xlabel
(
r
'
$\theta_\rho$
'
,
fontsize
=
10
)
# ax.xaxis.set_minor_locator(MultipleLocator(0.5))
ax
.
yaxis
.
set_major_locator
(
MultipleLocator
(
0.1
))
ax
.
xaxis
.
set_major_locator
(
MultipleLocator
(
1
))
# ax.set_ylabel('beta')
ax
.
set_ylabel
(
r
'
$\theta$
'
,
fontsize
=
10
,
rotation
=
0
)
# if make_3D_plot: ax.set_zlabel('theta')
plt
.
subplots_adjust
(
bottom
=
0.2
)
plt
.
grid
(
linestyle
=
'
--
'
,
linewidth
=
0.25
)
fig
.
set_size_inches
(
width
,
height
)
outputName
=
'
Plot-Contour_Gamma
'
+
str
(
gamma
)
+
'
.pdf
'
fig
.
savefig
(
outputName
)
# fig.savefig('Plot-Contour.pdf')
plt
.
show
()
# plt.savefig('common_labels.png', dpi=300)
# print('T:', T)
# print('Type 1 occured here:', np.where(T == 1))
# print('Type 2 occured here:', np.where(T == 2))
# print(alphas_)
# print(betas_)
# ALTERNATIVE
# colors = ("red", "green", "blue")
# groups = ("Type 1", "Type2", "Type3")
#
# # Create plot
# fig = plt.figure()
# ax = fig.add_subplot(1, 1, 1)
#
# for data, color, group in zip(Types, colors, groups):
# # x, y = data
# ax.scatter(alphas, thetas, alpha=0.8, c=color, edgecolors='none', label=group)
#
# plt.title('Matplot scatter plot')
# plt.legend(loc=2)
# plt.show()
This diff is collapsed.
Click to expand it.
src/PhaseDiagram_ContourSubPlots.py
0 → 100644
+
529
−
0
View file @
cb35f64b
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment