Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
d7b03048
Commit
d7b03048
authored
2 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Add more debugging tests
parent
270c411b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/Cell-Problem.cc
+223
-63
223 additions, 63 deletions
src/Cell-Problem.cc
with
223 additions
and
63 deletions
src/Cell-Problem.cc
+
223
−
63
View file @
d7b03048
...
...
@@ -218,8 +218,8 @@ void computeElementStiffnessMatrix(const LocalView& localView,
///////////////////////////////////////////////
// Basis for R_sym^{2x2} // wird nicht als Funktion benötigt da konstant...
//////////////////////////////////////////////
MatrixRT
G_1
{{
1.0
,
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
},
{
0.0
,
0
,
0.0
}};
MatrixRT
G_2
{{
0.0
,
0.0
,
0.0
},
{
0.0
,
1.0
,
0.0
},
{
0
,
0.0
,
0.0
}};
MatrixRT
G_1
{{
1.0
,
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
},
{
0.0
,
0.
0
,
0.0
}};
MatrixRT
G_2
{{
0.0
,
0.0
,
0.0
},
{
0.0
,
1.0
,
0.0
},
{
0
.0
,
0.0
,
0.0
}};
MatrixRT
G_3
{{
0.0
,
1.0
/
sqrt
(
2.0
),
0.0
},
{
1.0
/
sqrt
(
2.0
),
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
}};
std
::
array
<
MatrixRT
,
3
>
basisContainer
=
{
G_1
,
G_2
,
G_3
};
...
...
@@ -254,17 +254,22 @@ void computeElementStiffnessMatrix(const LocalView& localView,
MatrixRT
defGradientV
(
0
);
defGradientV
[
l
][
0
]
=
gradients
[
j
][
0
];
// Y
defGradientV
[
l
][
1
]
=
gradients
[
j
][
1
];
//X2
defGradientV
[
l
][
2
]
=
(
1.0
/
gamma
)
*
gradients
[
j
][
2
];
//X3
// defGradientV[l][2] = (1.0/gamma)*gradients[j][2]; //X3
defGradientV
[
l
][
2
]
=
gradients
[
j
][
2
];
//X3
defGradientV
=
crossSectionDirectionScaling
((
1
/
gamma
),
defGradientV
);
// "phi*phi"-part
for
(
size_t
k
=
0
;
k
<
dimWorld
;
k
++
)
for
(
size_t
i
=
0
;
i
<
nSf
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
nSf
;
i
++
)
{
// (scaled) Deformation gradient of the ansatz basis function
MatrixRT
defGradientU
(
0
);
defGradientU
[
k
][
0
]
=
gradients
[
i
][
0
];
// Y
defGradientU
[
k
][
1
]
=
gradients
[
i
][
1
];
//X2
defGradientU
[
k
][
2
]
=
(
1.0
/
gamma
)
*
gradients
[
i
][
2
];
//X3
// defGradientU[k][2] = (1.0/gamma)*gradients[i][2]; //X3
defGradientU
[
k
][
2
]
=
gradients
[
i
][
2
];
//X3
// printmatrix(std::cout, defGradientU , "defGradientU", "--");
defGradientU
=
crossSectionDirectionScaling
((
1
/
gamma
),
defGradientU
);
double
energyDensity
=
linearizedStVenantKirchhoffDensity
(
mu
(
quadPos
),
lambda
(
quadPos
),
defGradientU
,
defGradientV
);
// double energyDensity = generalizedDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // also works..
...
...
@@ -272,16 +277,16 @@ void computeElementStiffnessMatrix(const LocalView& localView,
size_t
col
=
localView
.
tree
().
child
(
k
).
localIndex
(
i
);
elementMatrix
[
row
][
col
]
+=
energyDensity
*
quadPoint
.
weight
()
*
integrationElement
;
}
}
// "m*phi" & "phi*m" - part
for
(
size_t
m
=
0
;
m
<
3
;
m
++
)
{
double
energyDensityGphi
=
linearizedStVenantKirchhoffDensity
(
mu
(
quadPos
),
lambda
(
quadPos
),
basisContainer
[
m
],
defGradientV
);
auto
value
=
energyDensityGphi
*
quadPoint
.
weight
()
*
integrationElement
;
elementMatrix
[
row
][
localPhiOffset
+
m
]
+=
value
;
elementMatrix
[
localPhiOffset
+
m
][
row
]
+=
value
;
}
// "m*phi" & "phi*m" - part
for
(
size_t
m
=
0
;
m
<
3
;
m
++
)
{
double
energyDensityGphi
=
linearizedStVenantKirchhoffDensity
(
mu
(
quadPos
),
lambda
(
quadPos
),
basisContainer
[
m
],
defGradientV
);
auto
value
=
energyDensityGphi
*
quadPoint
.
weight
()
*
integrationElement
;
elementMatrix
[
row
][
localPhiOffset
+
m
]
+=
value
;
elementMatrix
[
localPhiOffset
+
m
][
row
]
+=
value
;
}
}
// "m*m"-part
...
...
@@ -397,8 +402,8 @@ void computeElementLoadVector( const LocalView& localView,
///////////////////////////////////////////////
// Basis for R_sym^{2x2}
//////////////////////////////////////////////
MatrixRT
G_1
{{
1.0
,
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
},
{
0.0
,
0
,
0.0
}};
MatrixRT
G_2
{{
0.0
,
0.0
,
0.0
},
{
0.0
,
1.0
,
0.0
},
{
0
,
0.0
,
0.0
}};
MatrixRT
G_1
{{
1.0
,
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
},
{
0.0
,
0.
0
,
0.0
}};
MatrixRT
G_2
{{
0.0
,
0.0
,
0.0
},
{
0.0
,
1.0
,
0.0
},
{
0
.0
,
0.0
,
0.0
}};
MatrixRT
G_3
{{
0.0
,
1.0
/
sqrt
(
2.0
),
0.0
},
{
1.0
/
sqrt
(
2.0
),
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
}};
std
::
array
<
MatrixRT
,
3
>
basisContainer
=
{
G_1
,
G_2
,
G_3
};
...
...
@@ -428,7 +433,10 @@ void computeElementLoadVector( const LocalView& localView,
MatrixRT
defGradientV
(
0
);
defGradientV
[
k
][
0
]
=
gradients
[
i
][
0
];
// Y
defGradientV
[
k
][
1
]
=
gradients
[
i
][
1
];
// X2
defGradientV
[
k
][
2
]
=
(
1.0
/
gamma
)
*
gradients
[
i
][
2
];
// X3
// defGradientV[k][2] = (1.0/gamma)*gradients[i][2]; //
defGradientV
[
k
][
2
]
=
gradients
[
i
][
2
];
// X3
defGradientV
=
crossSectionDirectionScaling
((
1
/
gamma
),
defGradientV
);
double
energyDensity
=
linearizedStVenantKirchhoffDensity
(
mu
(
quadPos
),
lambda
(
quadPos
),
forceTerm
(
quadPos
),
defGradientV
);
size_t
row
=
localView
.
tree
().
child
(
k
).
localIndex
(
i
);
...
...
@@ -956,8 +964,8 @@ auto test_derivative(const Basis& basis,
auto
geometry
=
e
.
geometry
();
const
auto
&
localFiniteElement
=
localView
.
tree
().
child
(
0
).
finiteElement
();
//
int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST
int
orderQR
=
2
*
(
dim
*
localFiniteElement
.
localBasis
().
order
()
-
1
);
int
orderQR
=
2
*
(
dim
*
localFiniteElement
.
localBasis
().
order
()
-
1
+
5
);
// TEST
//
int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
const
QuadratureRule
<
double
,
dim
>&
quad
=
QuadratureRules
<
double
,
dim
>::
rule
(
e
.
type
(),
orderQR
);
for
(
const
auto
&
quadPoint
:
quad
)
...
...
@@ -1133,8 +1141,8 @@ auto check_Orthogonality(const Basis& basis,
auto
geometry
=
e
.
geometry
();
const
auto
&
localFiniteElement
=
localView
.
tree
().
child
(
0
).
finiteElement
();
//
int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST
int
orderQR
=
2
*
(
dim
*
localFiniteElement
.
localBasis
().
order
()
-
1
);
int
orderQR
=
2
*
(
dim
*
localFiniteElement
.
localBasis
().
order
()
-
1
+
5
);
// TEST
//
int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
const
QuadratureRule
<
double
,
dim
>&
quad
=
QuadratureRules
<
double
,
dim
>::
rule
(
e
.
type
(),
orderQR
);
for
(
const
auto
&
quadPoint
:
quad
)
...
...
@@ -1183,6 +1191,113 @@ auto check_Orthogonality(const Basis& basis,
template
<
class
Basis
,
class
LocalFunction1
,
class
LocalFunction2
,
class
GVFunction
,
class
MatrixFunction
,
class
Matrix
>
auto
computeFullQ
(
const
Basis
&
basis
,
LocalFunction1
&
mu
,
LocalFunction2
&
lambda
,
const
double
&
gamma
,
Matrix
&
M1
,
Matrix
&
M2
,
const
GVFunction
&
DerPhi_1
,
const
GVFunction
&
DerPhi_2
,
// const GVFunction& matrixFieldA,
const
MatrixFunction
&
matrixFieldFuncG1
,
const
MatrixFunction
&
matrixFieldFuncG2
)
{
// TEST HIGHER PRECISION
// using float_50 = boost::multiprecision::cpp_dec_float_50;
// float_50 higherPrecEnergy = 0.0;
double
energy
=
0.0
;
constexpr
int
dim
=
Basis
::
LocalView
::
Element
::
dimension
;
constexpr
int
dimWorld
=
dim
;
auto
localView
=
basis
.
localView
();
auto
DerPhi1
=
localFunction
(
DerPhi_1
);
auto
DerPhi2
=
localFunction
(
DerPhi_2
);
auto
matrixFieldG1GVF
=
Dune
::
Functions
::
makeGridViewFunction
(
matrixFieldFuncG1
,
basis
.
gridView
());
auto
matrixFieldG1
=
localFunction
(
matrixFieldG1GVF
);
auto
matrixFieldG2GVF
=
Dune
::
Functions
::
makeGridViewFunction
(
matrixFieldFuncG2
,
basis
.
gridView
());
auto
matrixFieldG2
=
localFunction
(
matrixFieldG2GVF
);
// auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
// auto matrixFieldB = localFunction(matrixFieldBGVF);
using
GridView
=
typename
Basis
::
GridView
;
using
Domain
=
typename
GridView
::
template
Codim
<
0
>
::
Geometry
::
GlobalCoordinate
;
using
MatrixRT
=
FieldMatrix
<
double
,
dimWorld
,
dimWorld
>
;
// TEST
// FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0};
// printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--");
for
(
const
auto
&
e
:
elements
(
basis
.
gridView
()))
{
localView
.
bind
(
e
);
matrixFieldG1
.
bind
(
e
);
matrixFieldG2
.
bind
(
e
);
DerPhi1
.
bind
(
e
);
DerPhi2
.
bind
(
e
);
mu
.
bind
(
e
);
lambda
.
bind
(
e
);
double
elementEnergy
=
0.0
;
//double elementEnergy_HP = 0.0;
auto
geometry
=
e
.
geometry
();
const
auto
&
localFiniteElement
=
localView
.
tree
().
child
(
0
).
finiteElement
();
int
orderQR
=
2
*
(
dim
*
localFiniteElement
.
localBasis
().
order
()
-
1
+
5
);
// TEST
// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
const
QuadratureRule
<
double
,
dim
>&
quad
=
QuadratureRules
<
double
,
dim
>::
rule
(
e
.
type
(),
orderQR
);
for
(
const
auto
&
quadPoint
:
quad
)
{
const
auto
&
quadPos
=
quadPoint
.
position
();
const
double
integrationElement
=
geometry
.
integrationElement
(
quadPos
);
auto
Chi1
=
sym
(
crossSectionDirectionScaling
(
1.0
/
gamma
,
DerPhi1
(
quadPos
)))
+
*
M1
;
auto
Chi2
=
sym
(
crossSectionDirectionScaling
(
1.0
/
gamma
,
DerPhi2
(
quadPos
)))
+
*
M2
;
// auto strain1 = DerPhi1(quadPos);
// // printmatrix(std::cout, strain1 , "strain1", "--");
// //cale with GAMMA
// strain1 = crossSectionDirectionScaling(1.0/gamma, strain1);
// strain1 = sym(strain1);
// ADD M
// auto test = strain1 + *M ;
// std::cout << "test:" << test << std::endl;
// for (size_t m=0; m<3; m++ )
// for (size_t n=0; n<3; n++ )
// strain1[m][n] += M[m][n];
auto
G1
=
matrixFieldG1
(
quadPos
);
auto
G2
=
matrixFieldG2
(
quadPos
);
auto
X1
=
G1
+
Chi1
;
auto
X2
=
G2
+
Chi2
;
double
energyDensity
=
linearizedStVenantKirchhoffDensity
(
mu
(
quadPos
),
lambda
(
quadPos
),
tmp1
,
tmp2
);
elementEnergy
+=
energyDensity
*
quadPoint
.
weight
()
*
integrationElement
;
// elementEnergy += strain1 * quadPoint.weight() * integrationElement;
//elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement;
}
energy
+=
elementEnergy
;
//higherPrecEnergy += elementEnergy_HP;
}
// TEST
// std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl;
return
energy
;
}
...
...
@@ -1485,6 +1600,18 @@ int main(int argc, char *argv[])
Func2Tensor
x3G_3neg
=
[
x3G_3
]
(
const
Domain
&
x
)
{
return
-
1.0
*
x3G_3
(
x
);};
//TEST
std
::
cout
<<
"Test crossSectionDirectionScaling:"
<<
std
::
endl
;
MatrixRT
T
{{
1.0
,
1.0
,
1.0
},
{
1.0
,
1.0
,
1.0
},
{
1.0
,
1.0
,
1.0
}};
printmatrix
(
std
::
cout
,
T
,
"Matrix T"
,
"--"
);
auto
ST
=
crossSectionDirectionScaling
((
1.0
/
5.0
),
T
);
printmatrix
(
std
::
cout
,
ST
,
"scaled Matrix T"
,
"--"
);
//TEST
// auto QuadraticForm = [] (const double mu, const double lambda, const MatrixRT& M) {
//
...
...
@@ -1768,6 +1895,7 @@ int main(int argc, char *argv[])
//TEST
// auto local_cor1 = localFunction(correctorFunction_1);
...
...
@@ -1782,6 +1910,8 @@ int main(int argc, char *argv[])
auto
Der2
=
derivative
(
correctorFunction_2
);
auto
Der3
=
derivative
(
correctorFunction_3
);
const
std
::
array
<
decltype
(
Der1
)
*
,
3
>
phiDerContainer
=
{
&
Der1
,
&
Der2
,
&
Der3
};
// auto output_der = test_derivative(Basis_CE,Der1);
...
...
@@ -1795,6 +1925,8 @@ int main(int argc, char *argv[])
FieldVector
<
double
,
3
>
B_hat
;
//VARIANT 1
//Compute effective elastic law Q
for
(
size_t
a
=
0
;
a
<
3
;
a
++
)
for
(
size_t
b
=
0
;
b
<
3
;
b
++
)
...
...
@@ -1807,21 +1939,33 @@ int main(int argc, char *argv[])
MGterm
=
energy_MG
(
Basis_CE
,
muLocal
,
lambdaLocal
,
mContainer
[
a
],
x3MatrixBasis
[
b
]);
double
tmp
=
0.0
;
if
(
a
==
0
)
{
tmp
=
test_derivative
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
Der1
,
x3MatrixBasis
[
b
]);
std
::
cout
<<
"check_Orthogonality:"
<<
check_Orthogonality
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
mContainer
[
1
],
Der1
,
Der2
,
x3MatrixBasis
[
a
])
<<
std
::
endl
;
}
else
if
(
a
==
1
)
{
tmp
=
test_derivative
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
Der2
,
x3MatrixBasis
[
b
]);
std
::
cout
<<
"check_Orthogonality:"
<<
check_Orthogonality
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
mContainer
[
1
],
Der2
,
Der2
,
x3MatrixBasis
[
a
])
<<
std
::
endl
;
}
else
{
tmp
=
test_derivative
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
Der3
,
x3MatrixBasis
[
b
]);
std
::
cout
<<
"check_Orthogonality:"
<<
check_Orthogonality
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
mContainer
[
1
],
Der3
,
Der2
,
x3MatrixBasis
[
a
])
<<
std
::
endl
;
}
tmp
=
test_derivative
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
*
phiDerContainer
[
a
],
x3MatrixBasis
[
b
]);
std
::
cout
<<
"---- ("
<<
a
<<
","
<<
b
<<
") ---- "
<<
std
::
endl
;
std
::
cout
<<
"check_Orthogonality:"
<<
check_Orthogonality
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
mContainer
[
b
],
*
phiDerContainer
[
a
],
*
phiDerContainer
[
b
],
x3MatrixBasis
[
a
])
<<
std
::
endl
;
// if(a==0)
// {
// tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der1,x3MatrixBasis[b]);
// std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der1,Der2,x3MatrixBasis[a]) << std::endl;
// }
// else if (a==1)
// {
// tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der2,x3MatrixBasis[b]);
// std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der2,Der2,x3MatrixBasis[a]) << std::endl;
// }
// else
// {
// tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der3,x3MatrixBasis[b]);
// std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der3,Der2,x3MatrixBasis[a]) << std::endl;
// }
std
::
cout
<<
"GGTerm:"
<<
GGterm
<<
std
::
endl
;
...
...
@@ -1829,9 +1973,7 @@ int main(int argc, char *argv[])
std
::
cout
<<
"tmp:"
<<
tmp
<<
std
::
endl
;
std
::
cout
<<
"(coeffContainer[a]*tmp1):"
<<
(
coeffContainer
[
a
]
*
tmp1
)
<<
std
::
endl
;
// TEST
// std::setprecision(std::numeric_limits<float>::digits10);
...
...
@@ -1845,31 +1987,49 @@ int main(int argc, char *argv[])
std
::
cout
<<
"coeff*tmp: "
<<
coeffContainer
[
a
]
*
tmp1
<<
std
::
endl
;
}
}
// // Compute effective elastic law Q
// for(size_t a = 0; a < 3; a++)
// for(size_t b=0; b < 3; b++)
// {
// assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]); // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) >
//
// double GGterm = 0.0;
// GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b] ); // <L i(x3G_alpha) , i(x3G_beta) >
//
// // TEST
// // std::setprecision(std::numeric_limits<float>::digits10);
//
// Q[a][b] = (coeffContainer[a]*tmp1) + GGterm; // seems symmetric...check positiv definitness?
//
// if (print_debug)
// {
// std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl;
// std::cout << "GGTerm:" << GGterm << std::endl;
// std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl;
// }
// }
printmatrix
(
std
::
cout
,
Q
,
"Matrix Q"
,
"--"
);
log
<<
"Effective Matrix Q: "
<<
std
::
endl
;
log
<<
Q
<<
std
::
endl
;
//VARIANT 2
//Compute effective elastic law Q
MatrixRT
Q_2
(
0
);
for
(
size_t
a
=
0
;
a
<
3
;
a
++
)
for
(
size_t
b
=
0
;
b
<
3
;
b
++
)
{
Q_2
[
a
][
b
]
=
computeFullQ
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
mContainer
[
a
],
mContainer
[
b
],
*
phiDerContainer
[
a
],
*
phiDerContainer
[
b
],
x3MatrixBasis
[
a
],
x3MatrixBasis
[
b
]);
}
printmatrix
(
std
::
cout
,
Q_2
,
"Matrix Q_2"
,
"--"
);
// VARIANT 3
// Compute effective elastic law Q
MatrixRT
Q_3
(
0
);
for
(
size_t
a
=
0
;
a
<
3
;
a
++
)
for
(
size_t
b
=
0
;
b
<
3
;
b
++
)
{
assembleCellLoad
(
Basis_CE
,
muLocal
,
lambdaLocal
,
gamma
,
tmp1
,
x3MatrixBasis
[
b
]);
// <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) >
double
GGterm
=
0.0
;
GGterm
=
energy
(
Basis_CE
,
muLocal
,
lambdaLocal
,
x3MatrixBasis
[
a
]
,
x3MatrixBasis
[
b
]
);
// <L i(x3G_alpha) , i(x3G_beta) >
// TEST
// std::setprecision(std::numeric_limits<float>::digits10);
Q_3
[
a
][
b
]
=
(
coeffContainer
[
a
]
*
tmp1
)
+
GGterm
;
// seems symmetric...check positiv definitness?
if
(
print_debug
)
{
std
::
cout
<<
"analyticGGTERM:"
<<
(
mu1
*
(
1
-
theta
)
+
mu2
*
theta
)
/
6.0
<<
std
::
endl
;
std
::
cout
<<
"GGTerm:"
<<
GGterm
<<
std
::
endl
;
std
::
cout
<<
"coeff*tmp: "
<<
coeffContainer
[
a
]
*
tmp1
<<
std
::
endl
;
}
}
printmatrix
(
std
::
cout
,
Q_3
,
"Matrix Q_3"
,
"--"
);
// compute B_hat
for
(
size_t
a
=
0
;
a
<
3
;
a
++
)
...
...
@@ -2347,5 +2507,5 @@ int main(int argc, char *argv[])
log
.
close
();
//
std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl;
std
::
cout
<<
"Total time elapsed: "
<<
globalTimer
.
elapsed
()
<<
std
::
endl
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment