Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
d7e19c9b
Commit
d7e19c9b
authored
4 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
fixed local Element assembly
parent
da401b8c
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/dune-microstructure.cc
+268
-279
268 additions, 279 deletions
src/dune-microstructure.cc
with
268 additions
and
279 deletions
src/dune-microstructure.cc
+
268
−
279
View file @
d7e19c9b
...
...
@@ -56,225 +56,219 @@ using namespace Dune;
template
<
class
LocalView
,
class
Matrix
,
class
localFunction1
,
class
localFunction2
>
void
computeElementStiffnessMatrixOLD
(
const
LocalView
&
localView
,
Matrix
&
elementMatrix
,
const
localFunction1
&
mu
,
const
localFunction2
&
lambda
,
const
double
gamma
)
{
// Local StiffnessMatrix of the form:
// | phi*phi m*phi |
// | phi *m m*m |
using
Element
=
typename
LocalView
::
Element
;
const
Element
element
=
localView
.
element
();
auto
geometry
=
element
.
geometry
();
constexpr
int
dim
=
Element
::
dimension
;
constexpr
int
nCompo
=
dim
;
using
MatrixRT
=
FieldMatrix
<
double
,
nCompo
,
nCompo
>
;
// using Domain = typename LocalView::GridView::Codim<0>::Geometry::GlobalCoordinate;
// using FuncScalar = std::function< ScalarRT(const Domain&) >;
// using Func2Tensor = std::function< MatrixRT(const Domain&) >;
elementMatrix
.
setSize
(
localView
.
size
()
+
3
,
localView
.
size
()
+
3
);
elementMatrix
=
0
;
// LocalBasis-Offset
const
int
localPhiOffset
=
localView
.
size
();
const
auto
&
localFiniteElement
=
localView
.
tree
().
child
(
0
).
finiteElement
();
// Unterscheidung children notwendig?
const
auto
nSf
=
localFiniteElement
.
localBasis
().
size
();
///////////////////////////////////////////////
// Basis for R_sym^{2x2} // wird nicht als Funktion benötigt da konstant...
//////////////////////////////////////////////
MatrixRT
G_1
{{
1.0
,
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
},
{
0.0
,
0
,
0.0
}};
MatrixRT
G_2
{{
0.0
,
0.0
,
0.0
},
{
0.0
,
1.0
,
0.0
},
{
0
,
0.0
,
0.0
}};
MatrixRT
G_3
{{
0.0
,
0.5
,
0.0
},
{
0.5
,
0.0
,
0.0
},
{
0.0
,
0.0
,
0.0
}};
std
::
array
<
MatrixRT
,
3
>
basisContainer
=
{
G_1
,
G_2
,
G_3
};
//print:
printmatrix
(
std
::
cout
,
basisContainer
[
0
]
,
"G_1"
,
"--"
);
printmatrix
(
std
::
cout
,
basisContainer
[
1
]
,
"G_2"
,
"--"
);
printmatrix
(
std
::
cout
,
basisContainer
[
2
]
,
"G_3"
,
"--"
);
////////////////////////////////////////////////////
int
orderQR
=
2
*
(
dim
*
localFiniteElement
.
localBasis
().
order
()
-
1
);
const
auto
&
quad
=
QuadratureRules
<
double
,
dim
>::
rule
(
element
.
type
(),
orderQR
);
for
(
const
auto
&
quadPoint
:
quad
)
{
const
auto
&
quadPos
=
quadPoint
.
position
();
const
auto
jacobianInverseTransposed
=
geometry
.
jacobianInverseTransposed
(
quadPoint
.
position
());
const
auto
integrationElement
=
geometry
.
integrationElement
(
quadPoint
.
position
());
// std::vector<FieldMatrix<double,1,dim> > referenceGradients; // old
std
::
vector
<
FieldMatrix
<
double
,
1
,
dim
>
>
referenceGradients
;
localFiniteElement
.
localBasis
().
evaluateJacobian
(
quadPoint
.
position
(),
referenceGradients
);
// Compute the shape function gradients on the grid element
std
::
vector
<
FieldVector
<
double
,
dim
>
>
gradients
(
referenceGradients
.
size
());
// std::vector< VectorRT> gradients(referenceGradients.size());
for
(
size_t
i
=
0
;
i
<
gradients
.
size
();
i
++
)
jacobianInverseTransposed
.
mv
(
referenceGradients
[
i
][
0
],
gradients
[
i
]);
for
(
size_t
k
=
0
;
k
<
nCompo
;
k
++
)
for
(
size_t
l
=
0
;
l
<
nCompo
;
l
++
)
{
for
(
size_t
i
=
0
;
i
<
nSf
;
i
++
)
for
(
size_t
j
=
0
;
j
<
nSf
;
j
++
)
{
// (scaled) Deformation gradient of the ansatz basis function
MatrixRT
defGradientU
(
0
);
defGradientU
[
k
][
0
]
=
gradients
[
i
][
0
];
// Y
defGradientU
[
k
][
1
]
=
gradients
[
i
][
1
];
//X2
defGradientU
[
k
][
2
]
=
(
1.0
/
gamma
)
*
gradients
[
i
][
2
];
//X3
// (scaled) Deformation gradient of the test basis function
MatrixRT
defGradientV
(
0
);
defGradientV
[
l
][
0
]
=
gradients
[
j
][
0
];
// Y
defGradientV
[
l
][
1
]
=
gradients
[
j
][
1
];
//X2
defGradientV
[
l
][
2
]
=
(
1.0
/
gamma
)
*
gradients
[
j
][
2
];
//X3
// symmetric Gradient (Elastic Strains)
MatrixRT
strainU
,
strainV
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
{
strainU
[
ii
][
jj
]
=
0.5
*
(
defGradientU
[
ii
][
jj
]
+
defGradientU
[
jj
][
ii
]);
// symmetric gradient
strainV
[
ii
][
jj
]
=
0.5
*
(
defGradientV
[
ii
][
jj
]
+
defGradientV
[
jj
][
ii
]);
// strainV[ii][jj] = 0.5 * (defGradientU[ii][jj] + defGradientU[jj][ii]); // same ? genügt strainU
}
// St.Venant-Kirchhoff stress
// < L sym[D_gamma*nabla phi_i], sym[D_gamma*nabla phi_j] >
// stressU*strainV
MatrixRT
stressU
(
0
);
stressU
.
axpy
(
2
*
mu
(
quadPos
),
strainU
);
//this += 2mu *strainU
double
trace
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
trace
+=
strainU
[
ii
][
ii
];
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
stressU
[
ii
][
ii
]
+=
lambda
(
quadPos
)
*
trace
;
// Local energy density: stress times strain
double
energyDensity
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
// energyDensity += stressU[ii][jj] * strainU[ii][jj]; // "phi*phi"-part
energyDensity
+=
stressU
[
ii
][
jj
]
*
strainV
[
ii
][
jj
];
/* size_t row = localView.tree().child(k).localIndex(i); // kann auf Unterscheidung zwischen k & l verzichten?!
size_t col = localView.tree().child(l).localIndex(j); */
// siehe DUNE-book p.394
// size_t col = localView.tree().child(k).localIndex(j); // Indizes mit k=l genügen .. Kroenecker-Delta_kl NEIN???
size_t
col
=
localView
.
tree
().
child
(
k
).
localIndex
(
i
);
// kann auf Unterscheidung zwischen k & l verzichten?!
size_t
row
=
localView
.
tree
().
child
(
l
).
localIndex
(
j
);
elementMatrix
[
row
][
col
]
+=
energyDensity
*
quadPoint
.
weight
()
*
integrationElement
;
for
(
size_t
m
=
0
;
m
<
3
;
m
++
)
{
// < L G_i, sym[D_gamma*nabla phi_j] >
// L G_i* strainV
// St.Venant-Kirchhoff stress
MatrixRT
stressG
(
0
);
stressG
.
axpy
(
2
*
mu
(
quadPos
),
basisContainer
[
m
]);
//this += 2mu *strainU
double
traceG
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
traceG
+=
basisContainer
[
m
][
ii
][
ii
];
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
stressG
[
ii
][
ii
]
+=
lambda
(
quadPos
)
*
traceG
;
double
energyDensityGphi
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
energyDensityGphi
+=
stressG
[
ii
][
jj
]
*
strainV
[
ii
][
jj
];
// "m*phi"-part
auto
value
=
energyDensityGphi
*
quadPoint
.
weight
()
*
integrationElement
;
elementMatrix
[
row
][
localPhiOffset
+
m
]
+=
value
;
elementMatrix
[
localPhiOffset
+
m
][
row
]
+=
value
;
// ---- reicht das ? --- TODO
// // equivalent? :
// // < L sym[D_gamma*nabla phi_i], G_j >
// double energyDensityPhiG = 0;
// template<class LocalView, class Matrix, class localFunction1, class localFunction2>
// void computeElementStiffnessMatrixOLD(const LocalView& localView,
// Matrix& elementMatrix,
// const localFunction1& mu,
// const localFunction2& lambda,
// const double gamma
// )
// {
//
// // Local StiffnessMatrix of the form:
// // | phi*phi m*phi |
// // | phi *m m*m |
//
// using Element = typename LocalView::Element;
// const Element element = localView.element();
// auto geometry = element.geometry();
//
// constexpr int dim = Element::dimension;
// constexpr int nCompo = dim;
//
// using MatrixRT = FieldMatrix< double, nCompo, nCompo>;
// // using Domain = typename LocalView::GridView::Codim<0>::Geometry::GlobalCoordinate;
// // using FuncScalar = std::function< ScalarRT(const Domain&) >;
// // using Func2Tensor = std::function< MatrixRT(const Domain&) >;
//
//
//
//
// elementMatrix.setSize(localView.size()+3, localView.size()+3);
// elementMatrix = 0;
//
//
// // LocalBasis-Offset
// const int localPhiOffset = localView.size();
//
// const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // Unterscheidung children notwendig?
// const auto nSf = localFiniteElement.localBasis().size();
//
//
//
//
// ///////////////////////////////////////////////
// // Basis for R_sym^{2x2} // wird nicht als Funktion benötigt da konstant...
// //////////////////////////////////////////////
// MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}};
// MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0, 0.0, 0.0}};
// MatrixRT G_3 {{0.0, 0.5, 0.0}, {0.5, 0.0, 0.0}, {0.0, 0.0, 0.0}};
//
//
// std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3};
// //print:
// printmatrix(std::cout, basisContainer[0] , "G_1", "--");
// printmatrix(std::cout, basisContainer[1] , "G_2", "--");
// printmatrix(std::cout, basisContainer[2] , "G_3", "--");
// ////////////////////////////////////////////////////
//
// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
// const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR);
//
//
// for (const auto& quadPoint : quad)
// {
//
//
// const auto& quadPos = quadPoint.position();
// const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPoint.position());
// const auto integrationElement = geometry.integrationElement(quadPoint.position());
//
// // std::vector<FieldMatrix<double,1,dim> > referenceGradients; // old
// std::vector< FieldMatrix< double, 1, dim> > referenceGradients;
// localFiniteElement.localBasis().evaluateJacobian(
// quadPoint.position(),
// referenceGradients);
//
// // Compute the shape function gradients on the grid element
// std::vector<FieldVector<double,dim> > gradients(referenceGradients.size());
// // std::vector< VectorRT> gradients(referenceGradients.size());
//
// for (size_t i=0; i<gradients.size(); i++)
// jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);
//
//
// for (size_t k=0; k < nCompo; k++)
// for (size_t l=0; l< nCompo; l++)
// {
// for (size_t i=0; i < nSf; i++)
// for (size_t j=0; j < nSf; j++ )
// {
//
// // (scaled) Deformation gradient of the ansatz basis function
// MatrixRT defGradientU(0);
// defGradientU[k][0] = gradients[i][0]; // Y
// defGradientU[k][1] = gradients[i][1]; //X2
// defGradientU[k][2] = (1.0/gamma)*gradients[i][2]; //X3
//
// // (scaled) Deformation gradient of the test basis function
// MatrixRT defGradientV(0);
// defGradientV[l][0] = gradients[j][0]; // Y
// defGradientV[l][1] = gradients[j][1]; //X2
// defGradientV[l][2] = (1.0/gamma)*gradients[j][2]; //X3
//
//
// // symmetric Gradient (Elastic Strains)
// MatrixRT strainU, strainV;
// for (int ii=0; ii<nCompo; ii++)
// for (int jj=0; jj<nCompo; jj++)
// energyDensityPhiG += stressU[ii][jj] * basisContainer[m][ii][jj]; // "phi*m"-part
// {
// strainU[ii][jj] = 0.5 * (defGradientU[ii][jj] + defGradientU[jj][ii]); // symmetric gradient
// strainV[ii][jj] = 0.5 * (defGradientV[ii][jj] + defGradientV[jj][ii]);
// // strainV[ii][jj] = 0.5 * (defGradientU[ii][jj] + defGradientU[jj][ii]); // same ? genügt strainU
//
// }
//
// // St.Venant-Kirchhoff stress
// // < L sym[D_gamma*nabla phi_i], sym[D_gamma*nabla phi_j] >
// // stressU*strainV
// MatrixRT stressU(0);
// stressU.axpy(2*mu(quadPos), strainU); //this += 2mu *strainU
//
// double trace = 0;
// for (int ii=0; ii<nCompo; ii++)
// trace += strainU[ii][ii];
//
// for (int ii=0; ii<nCompo; ii++)
// stressU[ii][ii] += lambda(quadPos) * trace;
//
// // Local energy density: stress times strain
// double energyDensity = 0;
// for (int ii=0; ii<nCompo; ii++)
// for (int jj=0; jj<nCompo; jj++)
// energyDensity += stressU[ii][jj] * strainV[ii][jj]; // "phi*phi"-part
//
// /* size_t row = localView.tree().child(k).localIndex(i); // kann auf Unterscheidung zwischen k & l verzichten?!
// size_t col = localView.tree().child(l).localIndex(j); */ // siehe DUNE-book p.394
// // size_t col = localView.tree().child(k).localIndex(j); // Indizes mit k=l genügen .. Kroenecker-Delta_kl NEIN???
// size_t col = localView.tree().child(k).localIndex(i); // kann auf Unterscheidung zwischen k & l verzichten?!
// size_t row = localView.tree().child(l).localIndex(j);
//
// elementMatrix[row][col] += energyDensity * quadPoint.weight() * integrationElement;
//
//
// for( size_t m=0; m<3; m++)
// {
//
// // < L G_i, sym[D_gamma*nabla phi_j] >
// // L G_i* strainV
//
// // St.Venant-Kirchhoff stress
// MatrixRT stressG(0);
// stressG.axpy(2*mu(quadPos), basisContainer[m]); //this += 2mu *strainU
//
// double traceG = 0;
// for (int ii=0; ii<nCompo; ii++)
// traceG += basisContainer[m][ii][ii];
//
// for (int ii=0; ii<nCompo; ii++)
// stressG[ii][ii] += lambda(quadPos) * traceG;
//
// double energyDensityGphi = 0;
// for (int ii=0; ii<nCompo; ii++)
// for (int jj=0; jj<nCompo; jj++)
// energyDensityGphi += stressG[ii][jj] * strainV[ii][jj]; // "m*phi"-part
//
//
// auto value = energyDensityGphi * quadPoint.weight() * integrationElement;
//
// elementMatrix[row][localPhiOffset+m] += value;
// elementMatrix[localPhiOffset+m][row] += value; // ---- reicht das ? --- TODO
//
//
// // // equivalent? :
// // // < L sym[D_gamma*nabla phi_i], G_j >
// // double energyDensityPhiG = 0;
// // for (int ii=0; ii<nCompo; ii++)
// // for (int jj=0; jj<nCompo; jj++)
// // energyDensityPhiG += stressU[ii][jj] * basisContainer[m][ii][jj]; // "phi*m"-part
// //
// // elementMatrix[localPhiOffset+m][row] += energyDensityPhiG * quadPoint.weight() * integrationElement;
// //
//
//
// // St.Venant-Kirchhoff stress
// // < L G_alpha, G_alpha >
// for(size_t n=0; n<3; n++)
// {
// double energyDensityGG = 0;
// for (int ii=0; ii<nCompo; ii++)
// for (int jj=0; jj<nCompo; jj++)
// energyDensityGG += stressG[ii][jj] * basisContainer[n][ii][jj]; // "m*m"-part
//
// elementMatrix[localPhiOffset+m][localPhiOffset+n]= energyDensityGG * quadPoint.weight() * integrationElement;
// }
//
//
//
// }
//
//
//
// }
//
//
// }
//
//
//
//
// }
//
//
// }
//
// elementMatrix[localPhiOffset+m][row] += energyDensityPhiG * quadPoint.weight() * integrationElement;
//
// St.Venant-Kirchhoff stress
// < L G_alpha, G_alpha >
for
(
size_t
n
=
0
;
n
<
3
;
n
++
)
{
double
energyDensityGG
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
energyDensityGG
+=
stressG
[
ii
][
jj
]
*
basisContainer
[
n
][
ii
][
jj
];
// "m*m"-part
elementMatrix
[
localPhiOffset
+
m
][
localPhiOffset
+
n
]
=
energyDensityGG
*
quadPoint
.
weight
()
*
integrationElement
;
}
}
}
}
}
}
template
<
class
LocalView
,
class
Matrix
,
class
localFunction1
,
class
localFunction2
>
...
...
@@ -408,13 +402,13 @@ void computeElementStiffnessMatrix(const LocalView& localView,
double
energyDensity
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
//
energyDensity += stressU[ii][jj] * strain
U
[ii][jj]; // "phi*phi"-part
energyDensity
+=
stressU
[
ii
][
jj
]
*
strain
V
[
ii
][
jj
];
energyDensity
+=
stressU
[
ii
][
jj
]
*
strain
V
[
ii
][
jj
];
// "phi*phi"-part
//
energyDensity += stressU[ii][jj] * strain
U
[ii][jj];
/*
size_t row = localView.tree().child(k).localIndex(i); // kann auf Unterscheidung zwischen k & l verzichten?!
size_t col = localView.tree().child(l).localIndex(j);
*/
// siehe DUNE-book p.394
// size_t col = localView.tree().child(k).localIndex(j); // Indizes mit k=l genügen .. Kroenecker-Delta_kl NEIN???
size_t
col
=
localView
.
tree
().
child
(
k
).
localIndex
(
i
);
// kann auf Unterscheidung zwischen k & l verzichten?!
//
size_t row = localView.tree().child(k).localIndex(i); // kann auf Unterscheidung zwischen k & l verzichten?!
//
size_t col = localView.tree().child(l).localIndex(j); // siehe DUNE-book p.394
// size_t col = localView.tree().child(k).localIndex(j);
// Indizes mit k=l genügen .. Kroenecker-Delta_kl NEIN???
size_t
col
=
localView
.
tree
().
child
(
k
).
localIndex
(
i
);
// kann auf Unterscheidung zwischen k & l verzichten?!
size_t
row
=
localView
.
tree
().
child
(
l
).
localIndex
(
j
);
elementMatrix
[
row
][
col
]
+=
energyDensity
*
quadPoint
.
weight
()
*
integrationElement
;
...
...
@@ -424,7 +418,7 @@ void computeElementStiffnessMatrix(const LocalView& localView,
}
// "m*phi"-part
// "m*phi"
& "phi*m"
-part
for
(
size_t
l
=
0
;
l
<
nCompo
;
l
++
)
for
(
size_t
j
=
0
;
j
<
nSf
;
j
++
)
{
...
...
@@ -472,7 +466,7 @@ void computeElementStiffnessMatrix(const LocalView& localView,
auto
value
=
energyDensityGphi
*
quadPoint
.
weight
()
*
integrationElement
;
elementMatrix
[
row
][
localPhiOffset
+
m
]
+=
value
;
//
elementMatrix[localPhiOffset+m][row] += value; // ---- reicht das ? --- TODO
elementMatrix
[
localPhiOffset
+
m
][
row
]
+=
value
;
// ---- reicht das ? --- TODO
}
...
...
@@ -481,60 +475,59 @@ void computeElementStiffnessMatrix(const LocalView& localView,
// "phi*m"-part
for
(
size_t
k
=
0
;
k
<
nCompo
;
k
++
)
for
(
size_t
i
=
0
;
i
<
nSf
;
i
++
)
{
// (scaled) Deformation gradient of the ansatz basis function
MatrixRT
defGradientU
(
0
);
defGradientU
[
k
][
0
]
=
gradients
[
i
][
0
];
// Y
defGradientU
[
k
][
1
]
=
gradients
[
i
][
1
];
//X2
defGradientU
[
k
][
2
]
=
(
1.0
/
gamma
)
*
gradients
[
i
][
2
];
//X3
// symmetric Gradient (Elastic Strains)
MatrixRT
strainU
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
{
strainU
[
ii
][
jj
]
=
0.5
*
(
defGradientU
[
ii
][
jj
]
+
defGradientU
[
jj
][
ii
]);
// symmetric gradient
}
// St.Venant-Kirchhoff stress
MatrixRT
stressU
(
0
);
stressU
.
axpy
(
2
*
mu
(
quadPos
),
strainU
);
//this += 2mu *strainU
double
trace
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
trace
+=
strainU
[
ii
][
ii
];
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
stressU
[
ii
][
ii
]
+=
lambda
(
quadPos
)
*
trace
;
for
(
size_t
n
=
0
;
n
<
3
;
n
++
)
{
// < L sym[D_gamma*nabla phi_i], G_j >
double
energyDensityPhiG
=
0
;
for
(
int
ii
=
0
;
ii
<
nCompo
;
ii
++
)
for
(
int
jj
=
0
;
jj
<
nCompo
;
jj
++
)
energyDensityPhiG
+=
stressU
[
ii
][
jj
]
*
basisContainer
[
n
][
ii
][
jj
];
// "phi*m"-part
size_t
col
=
localView
.
tree
().
child
(
k
).
localIndex
(
i
);
elementMatrix
[
localPhiOffset
+
n
][
col
]
+=
energyDensityPhiG
*
quadPoint
.
weight
()
*
integrationElement
;
}
}
//
for (size_t k=0; k < nCompo; k++)
//
for (size_t i=0; i < nSf; i++)
//
{
//
//
// (scaled) Deformation gradient of the ansatz basis function
//
MatrixRT defGradientU(0);
//
defGradientU[k][0] = gradients[i][0]; // Y
//
defGradientU[k][1] = gradients[i][1]; //X2
//
defGradientU[k][2] = (1.0/gamma)*gradients[i][2]; //X3
//
//
//
// symmetric Gradient (Elastic Strains)
//
MatrixRT strainU;
//
for (int ii=0; ii<nCompo; ii++)
//
for (int jj=0; jj<nCompo; jj++)
//
{
//
strainU[ii][jj] = 0.5 * (defGradientU[ii][jj] + defGradientU[jj][ii]); // symmetric gradient
//
}
//
//
// St.Venant-Kirchhoff stress
//
MatrixRT stressU(0);
//
stressU.axpy(2*mu(quadPos), strainU); //this += 2mu *strainU
//
//
double trace = 0;
//
for (int ii=0; ii<nCompo; ii++)
//
trace += strainU[ii][ii];
//
//
for (int ii=0; ii<nCompo; ii++)
//
stressU[ii][ii] += lambda(quadPos) * trace;
//
//
for( size_t n=0; n<3; n++)
//
{
//
//
// < L sym[D_gamma*nabla phi_i], G_j >
//
double energyDensityPhiG = 0;
//
for (int ii=0; ii<nCompo; ii++)
//
for (int jj=0; jj<nCompo; jj++)
//
energyDensityPhiG += stressU[ii][jj] * basisContainer[n][ii][jj]; // "phi*m"-part
//
//
size_t col = localView.tree().child(k).localIndex(i);
//
//
elementMatrix[localPhiOffset+n][col] += energyDensityPhiG * quadPoint.weight() * integrationElement;
//
//
}
//
//
//
//
}
// "m*m"-part
for
(
size_t
m
=
0
;
m
<
3
;
m
++
)
for
(
size_t
n
=
0
;
n
<
3
;
n
++
)
{
...
...
@@ -560,10 +553,6 @@ void computeElementStiffnessMatrix(const LocalView& localView,
}
}
...
...
@@ -868,9 +857,9 @@ void assembleCellProblem(const Basis& basis,
computeElementStiffnessMatrix
(
localView
,
elementMatrix
,
muLocal
,
lambdaLocal
,
gamma
);
printmatrix
(
std
::
cout
,
elementMatrix
,
"ElementMatrix"
,
"--"
);
Dune
::
Matrix
<
double
>
TestelementMatrix
;
computeElementStiffnessMatrixOLD
(
localView
,
TestelementMatrix
,
muLocal
,
lambdaLocal
,
gamma
);
printmatrix
(
std
::
cout
,
TestelementMatrix
,
"TESTElementMatrix"
,
"--"
);
//
Dune::Matrix<double> TestelementMatrix;
//
computeElementStiffnessMatrixOLD(localView, TestelementMatrix, muLocal, lambdaLocal, gamma);
//
printmatrix(std::cout, TestelementMatrix, "TESTElementMatrix", "--");
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment