Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
d843d66d
Commit
d843d66d
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Update
parent
a87937f8
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/Plot_MinVec.py
+174
-96
174 additions, 96 deletions
src/Plot_MinVec.py
with
174 additions
and
96 deletions
src/Plot_MinVec.py
+
174
−
96
View file @
d843d66d
...
@@ -108,7 +108,7 @@ lambda1 = 0.0
...
@@ -108,7 +108,7 @@ lambda1 = 0.0
gamma
=
1.0
/
4.0
gamma
=
1.0
/
4.0
gamma
=
'
infinity
'
gamma
=
'
infinity
'
#
gamma = '0'
gamma
=
'
0
'
print
(
'
mu1:
'
,
mu1
)
print
(
'
mu1:
'
,
mu1
)
...
@@ -174,11 +174,27 @@ xmax = 0.3
...
@@ -174,11 +174,27 @@ xmax = 0.3
xmin
=
0.193
xmin
=
0.193
xmax
=
0.24
xmax
=
0.24
xmin
=
0.05
xmin
=
0.01
xmiddle
=
0.24
#0.24242424242424246 #0.24
xmax
=
0.4
xmax
=
0.4
numPoints
=
100
numPoints_1
=
15
X_Values
=
np
.
linspace
(
xmin
,
xmax
,
num
=
numPoints
)
numPoints_2
=
15
# test
JumpVal
=
0.194
#0.19515151515151516
#X_Values before interesting part
tick
=
(
JumpVal
-
xmin
)
/
numPoints_1
# tick = (JumpVal-xmin)/numPoints_2
print
(
'
tick:
'
,
tick
)
X_Values_one
=
np
.
linspace
(
xmin
,
JumpVal
-
tick
,
num
=
numPoints_1
)
X_Values_middle
=
np
.
linspace
(
JumpVal
,
xmiddle
,
num
=
numPoints_2
)
X_Values_two
=
np
.
linspace
(
JumpVal
,
xmax
,
num
=
numPoints_1
)
X_Values
=
np
.
concatenate
([
X_Values_one
,
X_Values_middle
,
X_Values_two
])
print
(
'
X_values_one:
'
,
X_Values_one
)
print
(
'
X_values_two:
'
,
X_Values_two
)
print
(
'
X_values:
'
,
X_Values
)
print
(
'
X_values:
'
,
X_Values
)
...
@@ -186,8 +202,8 @@ Y_Values = []
...
@@ -186,8 +202,8 @@ Y_Values = []
Angle_Values
=
[]
Angle_Values
=
[]
other
=
False
# other = True
for
theta
in
X_Values
:
for
theta
in
X_Values
:
...
@@ -310,6 +326,11 @@ print("(Output) Values of " + yName + ": ", Y_Values)
...
@@ -310,6 +326,11 @@ print("(Output) Values of " + yName + ": ", Y_Values)
# print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
# print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) )
print
(
'
X_values:
'
,
X_Values
)
print
(
'
Y_values:
'
,
Y_Values
)
# ---------------- Create Plot -------------------
# ---------------- Create Plot -------------------
plt
.
figure
()
plt
.
figure
()
...
@@ -331,39 +352,49 @@ JumpVal = 0.19
...
@@ -331,39 +352,49 @@ JumpVal = 0.19
X_Values
=
np
.
array
(
X_Values
)
X_Values
=
np
.
array
(
X_Values
)
Y_Values
=
np
.
array
(
Y_Values
)
Y_Values
=
np
.
array
(
Y_Values
)
Angle_Values
=
np
.
array
(
Angle_Values
)
Angle_Values
=
np
.
array
(
Angle_Values
)
X_one
=
X_Values
[
X_Values
<
0.19
]
#
X_one = X_Values[X_Values<0.19]
Y_one
=
Y_Values
[
X_Values
<
0.19
]
#
Y_one = Y_Values[X_Values<0.19]
Angle_one
=
Angle_Values
[
X_Values
<
0.19
]
#
Angle_one=Angle_Values[X_Values<0.19]
X_two
=
X_Values
[
X_Values
>=
0.19
]
#
X_two = X_Values[X_Values>=0.19]
Y_two
=
Y_Values
[
X_Values
>=
0.19
]
#
Y_two = Y_Values[X_Values>=0.19]
Angle_two
=
Angle_Values
[
X_Values
>=
0.19
]
#
Angle_two=Angle_Values[X_Values>=0.19]
X_Values
=
X_two
#
X_Values = X_two
Y_Values
=
Y_two
#
Y_Values = Y_two
Angle_Values
=
Angle_two
# #
Angle_Values = Angle_two
print
(
'
X_one:
'
,
X_Values
)
#
print('X_one:', X_Values)
color
=
[
'
r
'
,
'
b
'
,
'
g
'
]
color
=
[
'
r
'
,
'
b
'
,
'
g
'
]
cmap
=
cm
.
get_cmap
(
name
=
'
rainbow
'
)
cmap
=
cm
.
get_cmap
(
name
=
'
rainbow
'
)
Y_arr
=
np
.
asarray
(
Y_Values
,
dtype
=
float
)
Y_arr
=
np
.
asarray
(
Y_Values
,
dtype
=
float
)
Angle_arr
=
np
.
asarray
(
Angle_Values
,
dtype
=
float
)
Angle_Values
=
np
.
asarray
(
Angle_Values
,
dtype
=
float
)
# Angle_two = np.asarray(Angle_two, dtype=float)
X_Values
=
np
.
asarray
(
X_Values
,
dtype
=
float
)
X_Values
=
np
.
asarray
(
X_Values
,
dtype
=
float
)
Y_one
=
np
.
asarray
(
Y_one
,
dtype
=
float
)
#
Y_one = np.asarray(Y_one, dtype=float)
Angle_one
=
np
.
asarray
(
Angle_one
,
dtype
=
float
)
#
Angle_one = np.asarray(Angle_one, dtype=float)
X_one
=
np
.
asarray
(
X_one
,
dtype
=
float
)
#
X_one = np.asarray(X_one, dtype=float)
# print('X_one:', X_one)
# print('Y_one:', Y_one)
# print('Angle_one:', Angle_one)
print
(
'
X_Values:
'
,
X_Values
)
print
(
'
X_Values:
'
,
X_Values
)
print
(
'
Y_arr:
'
,
Y_arr
)
print
(
'
Y_arr:
'
,
Y_arr
)
print
(
'
Angle_arr:
'
,
Angle_arr
)
# print('Angle_two:', Angle_two)
#
# print('X_Values:', X_Values)
# print('Y_arr:', Y_arr)
# print('Angle_two:', Angle_two)
# Or = np.zeros_like(Y_arr)
# Or = np.zeros_like(Y_arr)
Or_tmp
=
np
.
ones_like
(
X_Values
)
#
Or_tmp = np.ones_like(X_Values)
# Or = np.concatenate(([X_Values],[Or_tmp]) ,axis=1)
# Or = np.concatenate(([X_Values],[Or_tmp]) ,axis=1)
# Or = np.array([X_Values,Or_tmp])
# Or = np.array([X_Values,Or_tmp])
...
@@ -381,19 +412,26 @@ print('ones.', np.ones((5,1),dtype=float))
...
@@ -381,19 +412,26 @@ print('ones.', np.ones((5,1),dtype=float))
# Or = np.hstack([np.transpose(X_Values),np.transpose(Or_tmp)])
# Or = np.hstack([np.transpose(X_Values),np.transpose(Or_tmp)])
# Or = np.hstack((X_Values,np.ones((X_Values.shape[0],1), dtype=X_Values.dtype)))
# Or = np.hstack((X_Values,np.ones((X_Values.shape[0],1), dtype=X_Values.dtype)))
X_Values
=
X_Values
.
reshape
(
X_Values
.
shape
[
0
],
1
)
X_Values
=
X_Values
.
reshape
(
X_Values
.
shape
[
0
],
1
)
X_one
=
X_one
.
reshape
(
X_one
.
shape
[
0
],
1
)
#
X_one= X_one.reshape(X_one.shape[0],1)
Or_one
=
np
.
hstack
((
X_one
,
np
.
zeros
((
X_one
.
shape
[
0
],
1
),
dtype
=
float
)))
#
Or_one = np.hstack((X_one,np.zeros((X_one.shape[0],1),dtype=float)))
Or
=
np
.
hstack
((
X_Values
,
np
.
zeros
((
X_Values
.
shape
[
0
],
1
),
dtype
=
float
)))
Or
=
np
.
hstack
((
X_Values
,
np
.
zeros
((
X_Values
.
shape
[
0
],
1
),
dtype
=
float
)))
print
(
'
Or:
'
,
Or
)
print
(
'
Or:
'
,
Or
)
# print('Or_one:', Or_one)
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
#normalize
#normalize
sum_of_rows
=
Y_arr
.
sum
(
axis
=
1
)
sum_of_rows
=
Y_arr
.
sum
(
axis
=
1
)
Y_arrN
=
Y_arr
/
sum_of_rows
[:,
np
.
newaxis
]
print
(
'
sum_of_rows:
'
,
sum_of_rows
)
# Y_arrN = Y_arr / sum_of_rows[:,np.newaxis]
Y_arrN
=
Y_arr
/
np
.
linalg
.
norm
(
Y_arr
,
ord
=
2
,
axis
=
1
,
keepdims
=
True
)
# Y_arrN = Y_arr / np.sqrt(np.sum(Y_arr**2))
# Y_arrN = Y_arr / np.sqrt(np.sum(Y_arr**2))
# print('normalized Y_arrN_OLD:', Y_arrN)
print
(
'
normalized Y_arrN:
'
,
Y_arrN
)
print
(
'
normalized Y_arrN:
'
,
Y_arrN
)
# sum_of_rows_one = Y_one.sum(axis=1)
# Y_oneN = Y_one / sum_of_rows_one[:,np.newaxis]
# print('normalized Y_one:', Y_oneN)
plt
.
grid
(
b
=
True
,
which
=
'
major
'
)
plt
.
grid
(
b
=
True
,
which
=
'
major
'
)
...
@@ -403,8 +441,16 @@ print(Or[:,1])
...
@@ -403,8 +441,16 @@ print(Or[:,1])
print
(
Or
[:,
0
])
print
(
Or
[:,
0
])
print
(
Y_arrN
[:,
0
])
print
(
Y_arrN
[:,
0
])
#
# print('Or_one[:,1]',Or_one[:,1])
# print(Or_one[:,0])
# print(Y_oneN[:,0])
norm
=
Normalize
()
norm
=
Normalize
()
norm
.
autoscale
(
Angle_arr
)
norm
.
autoscale
(
Angle_Values
)
#here full array needed?!
# norm.autoscale(Angle_one)
colormap
=
cm
.
RdBu
colormap
=
cm
.
RdBu
...
@@ -415,27 +461,42 @@ colormap = cm.RdBu
...
@@ -415,27 +461,42 @@ colormap = cm.RdBu
# Plot only every second one
# Plot only every second one
skip
=
(
slice
(
None
,
None
,
2
))
skip
=
(
slice
(
None
,
None
,
2
))
skip
=
(
slice
(
None
,
None
,
2
))
# skip = (slice(None,None,2))
widths
=
np
.
linspace
(
0
,
2
,
X_Values
.
size
)
# Q = ax.quiver(Or[:,0][skip], Or[:,1][skip] , Y_arrN[:,0][skip], Y_arrN[:,1][skip], color = colormap(norm(Angle_arr)), angles='xy', scale=5, units='xy', alpha=0.8,
# Q = ax.quiver(Or[:,0][skip], Or[:,1][skip] , Y_arrN[:,0][skip], Y_arrN[:,1][skip], color = colormap(norm(Angle_arr)), angles='xy', scale=5, units='xy', alpha=0.8,
# headwidth=2)
# headwidth=2)
Q_2
=
ax
.
quiver
(
Or
[:,
0
][
skip
],
Or
[:,
1
][
skip
]
,
Y_
arrN
[:,
0
][
skip
],
Y_
arrN
[:,
1
][
skip
],
color
=
colormap
(
norm
(
Angle_
arr
)),
angles
=
'
xy
'
,
scale
=
5
,
units
=
'
xy
'
,
alpha
=
0.8
,
# Q_one
= ax.quiver(Or
_one
[:,0][skip], Or
_one
[:,1][skip] , Y_
one
[:,0][skip], Y_
one
[:,1][skip], color = colormap(norm(Angle_
Values
)), angles='xy', scale=5, units='xy', alpha=0.8,
headwidth
=
2
)
#
headwidth=2)
Q
=
ax
.
quiver
(
Or
[:,
0
],
Or
[:,
1
]
,
Y_arrN
[:,
0
],
Y_arrN
[:,
1
],
color
=
colormap
(
norm
(
Angle_
arr
)),
angles
=
'
xy
'
,
scale
=
8
,
units
=
'
xy
'
,
alpha
=
0.8
,
#
Q = ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_
Values
)), angles='xy', scale=
15
, units='xy', alpha=0.8,
headwidth
=
2
)
#
headwidth=2)
# f.colorbar(Q,extend='max')
# Q = ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_Values)), angles='xy', units='xy', alpha=0.8, scale=10,
# headwidth=2, linewidths=widths, edgecolors='k')
# Q = ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_Values)), angles='xy', units='xy', alpha=0.8, scale=20,
# headwidth=0.01, headlength=5, width=0.01, edgecolors='k')
# Q = ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_Values)), angles='xy', units='xy', alpha=0.8, scale=20, linewidth=0.1, edgecolors='k')
# Q = ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_Values)) , alpha=0.8, scale=20, linewidth=0.05, edgecolors='k', scale_units='width')
# Q = ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_Values)) , alpha=0.8, scale=15, scale_units='x', linewidth=0.3)
Q
=
ax
.
quiver
(
Or
[:,
0
],
Or
[:,
1
]
,
Y_arrN
[:,
0
],
Y_arrN
[:,
1
],
color
=
colormap
(
norm
(
Angle_Values
))
,
alpha
=
1.0
,
scale
=
10
,
)
# (Y_Values[:,0].max()-Y_Values[:,0].min())
# f.colorbar(Q,extend='max')
# ax.colorbar(Q )
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], scale=5, units='xy')
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], scale=5, units='xy')
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], Angle_arr, angles='xy', scale=5, units='xy')
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], Angle_arr, angles='xy', scale=5, units='xy')
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_arr)), angles='xy', scale=15, units='xy')
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_arr)), angles='xy', scale=15, units='xy')
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_arr)), angles='xy', scale=5, units='xy', alpha=0.8,
# ax.quiver(Or[:,0], Or[:,1] , Y_arrN[:,0], Y_arrN[:,1], color = colormap(norm(Angle_arr)), angles='xy', scale=5, units='xy', alpha=0.8,
# headwidth=2)
# headwidth=2)
ax
.
scatter
(
Or
[:,
0
],
Or
[:,
1
],
c
=
'
black
'
,
s
=
10
)
ax
.
scatter
(
Or
[:,
0
],
Or
[:,
1
])
# ax.scatter(Or_one[:,0], Or_one[:,1], c='black', s=10)
# ax.set_aspect('equal')
# ax.set_aspect('equal')
# ax.set_aspect('auto')
# ax.set_aspect('auto')
# ax.axis([0.1,0.4 , -0.1, 0.75])
# ax.axis([0.1,0.4 , -0.1, 0.75])
...
@@ -445,74 +506,91 @@ ax.scatter(Or[:,0], Or[:,1], c='black', s=10)
...
@@ -445,74 +506,91 @@ ax.scatter(Or[:,0], Or[:,1], c='black', s=10)
# ax.set_ylim((-0.1, Y_arrN[:,1].max()))
# ax.set_ylim((-0.1, Y_arrN[:,1].max()))
ax
.
set_xlim
((
0.1
,
X_Values
[:,
0
].
max
()
+
0.2
))
plt
.
axvline
(
JumpVal
,
ymin
=
0
,
ymax
=
1
,
color
=
'
g
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
)
ax
.
set_ylim
((
-
0.1
,
0.2
))
plt
.
axvline
(
xmiddle
,
ymin
=
0
,
ymax
=
1
,
color
=
'
g
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
)
# ax.tick_params(labelleft = False)
plt
.
axvline
(
0.13606060606060608
,
ymin
=
0
,
ymax
=
1
,
color
=
'
g
'
,
alpha
=
0.5
,
linestyle
=
'
dashed
'
)
plt
.
show
()
# plt.quiver(Or , Y_arrN[:,0], Y_arrN[:,1])
for
i
,
y
in
enumerate
(
Y_Values
):
maxes
=
1.1
*
np
.
amax
(
abs
(
Y_Values
[
i
]),
axis
=
0
)
tmp
=
Y_Values
[
i
]
print
(
'
tmp:
'
,
tmp
)
tmp_normalized
=
tmp
/
np
.
sqrt
(
np
.
sum
(
tmp
**
2
))
print
(
'
tmp_normalized:
'
,
tmp_normalized
)
# origin = np.array([[0, 0, 0],[0, 0, 0]]) # origin point
origin
=
np
.
array
([
X_Values
[
i
],
1
])
# origin = np.array([0,0])
print
(
'
origin:
'
,
origin
)
plt
.
scatter
(
origin
[
0
],
origin
[
1
])
# plt.plot(origin, 'ok')
# plt.axis('equal')
# plt.axis('auto')
plt
.
xlim
([
-
0.1
,
0.4
])
plt
.
ylim
([
0
,
4
])
# plt.xlim([-maxes[0], maxes[0]])
# plt.ylim([-maxes[1], maxes[1]])
# plt.quiver(*origin, tmp[0], tmp[1], headlength=4)
# plt.axes().arrow(*origin, tmp[0], tmp[1],head_width=0.05, head_length = 0.1, color = color[1])
# plt.arrow(*origin, tmp[0], tmp[1],head_width=0.05, head_length = 0.1, color = color[1])
# plt.arrow(*origin, tmp_normalized[0], tmp_normalized[1], color = color[1])
# plt.arrow(*origin, tmp_normalized[0], tmp_normalized[1], head_width=0.05, head_length = 0.1, color = color[1])
plt
.
arrow
(
*
origin
,
tmp_normalized
[
0
],
tmp_normalized
[
1
],
head_width
=
0.05
,
head_length
=
0.1
,
color
=
cmap
(
i
))
plt
.
grid
(
b
=
True
,
which
=
'
major
'
)
# plt.quiver(*origin, test[0], test[1], color=['r','b','g'], scale=21)
# plt.quiver(*origin, Y_Values[0][:,0], Y_Values[0][:,1], color=['r','b','g'], scale=21)
# plt.quiver(*origin, Y_Values[:,0], V[:,1], color=['r','b','g'], scale=21)
# plt.quiver(*origin, Y_Values[:,0], V[:,1], color=['r','b','g'], scale=21)
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
# ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12))
# ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
ax
.
set_xlim
((
0.1
,
X_Values
[:,
0
].
max
()
+
0.1
))
ax
.
set_ylim
((
-
0.05
,
0.1
))
ax
.
set_xticks
(
np
.
arange
(
0
,
0.45
,
step
=
0.05
))
# ax.set(aspect=1)
ax
.
tick_params
(
labelleft
=
False
)
cbar
=
f
.
colorbar
(
cm
.
ScalarMappable
(
norm
=
norm
,
cmap
=
colormap
),
ax
=
ax
,
ticks
=
[
0
,
np
.
pi
/
2
])
cbar
.
ax
.
set_yticklabels
([
'
0
'
,
r
"
$\pi/2$
"
])
plt
.
show
()
plt
.
show
()
# ax.plot(X_Values, Y_Values)
# plt.quiver(Or , Y_arrN[:,0], Y_arrN[:,1])
# ax.scatter(X_Values, Y_Values)
# plt.plot(x_plotValues, y_plotValues,'.')
# plt.scatter(X_Values, Y_Values, alpha=0.3)
# plt.scatter(X_Values, Y_Values)
# plt.plot(X_Values, Y_Values,'.')
# plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# plt.axis([0, 6, 0, 20])
plt
.
xlabel
(
xName
)
# plt.ylabel(yName)
plt
.
ylabel
(
'
$\kappa$
'
)
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1))
ax
.
grid
(
True
)
plt
.
scatter
(
Or
[:,
0
],
Or
[:,
1
],
c
=
'
black
'
,
s
=
10
)
if
other
:
for
i
,
y
in
enumerate
(
Y_Values
):
maxes
=
1.1
*
np
.
amax
(
abs
(
Y_Values
[
i
]),
axis
=
0
)
tmp
=
Y_Values
[
i
]
print
(
'
tmp:
'
,
tmp
)
tmp_normalized
=
tmp
/
np
.
sqrt
(
np
.
sum
(
tmp
**
2
))
print
(
'
tmp_normalized:
'
,
tmp_normalized
)
# origin = np.array([[0, 0, 0],[0, 0, 0]]) # origin point
origin
=
np
.
array
([
X_Values
[
i
],
1
])
# origin = np.array([0,0])
print
(
'
origin:
'
,
origin
)
# plt.scatter(origin[0],origin[1])
# plt.plot(origin, 'ok')
# plt.axis('equal')
# plt.axis('auto')
plt
.
xlim
([
-
0.1
,
0.4
])
plt
.
ylim
([
-
0.1
,
4
])
# plt.xlim([-maxes[0], maxes[0]])
# plt.ylim([-maxes[1], maxes[1]])
# plt.quiver(*origin, tmp[0], tmp[1], headlength=4)
# plt.axes().arrow(*origin, tmp[0], tmp[1],head_width=0.05, head_length = 0.1, color = color[1])
# plt.arrow(*origin, tmp[0], tmp[1],head_width=0.05, head_length = 0.1, color = color[1])
# plt.arrow(*origin, tmp_normalized[0], tmp_normalized[1], color = color[1])
# plt.arrow(*origin, tmp_normalized[0], tmp_normalized[1], head_width=0.05, head_length = 0.1, color = color[1])
# plt.arrow(*origin, tmp_normalized[0], tmp_normalized[1], head_width=0.05, head_length = 0.1, color = cmap(i))
# plt.arrow(origin[i,0], origin[i,1], tmp_normalized[0], tmp_normalized[1], head_width=0.05, head_length = 0.1, color = cmap(i))
# plt.arrow(origin[i,0], origin[i,1], tmp_normalized[0], tmp_normalized[1], head_width=0.05, head_length = 0.1, color = cmap(i))
# w = 0.005 * (y - ymin) / (ymax - ymin)
w
=
0.005
plt
.
quiver
(
Or
[
i
,
0
],
Or
[
i
,
1
]
,
Y_arrN
[
i
,
0
],
Y_arrN
[
i
,
1
],
color
=
colormap
(
norm
(
Angle_Values
)),
angles
=
'
xy
'
,
units
=
'
xy
'
,
alpha
=
0.8
,
headwidth
=
2
,
width
=
w
,
edgecolors
=
'
k
'
)
plt
.
grid
(
b
=
True
,
which
=
'
major
'
)
# plt.quiver(*origin, test[0], test[1], color=['r','b','g'], scale=21)
# plt.quiver(*origin, Y_Values[0][:,0], Y_Values[0][:,1], color=['r','b','g'], scale=21)
# plt.quiver(*origin, Y_Values[:,0], V[:,1], color=['r','b','g'], scale=21)
# plt.quiver(*origin, Y_Values[:,0], V[:,1], color=['r','b','g'], scale=21)
plt
.
show
()
# ax.plot(X_Values, Y_Values)
# ax.scatter(X_Values, Y_Values)
# plt.plot(x_plotValues, y_plotValues,'.')
# plt.scatter(X_Values, Y_Values, alpha=0.3)
# plt.scatter(X_Values, Y_Values)
# plt.plot(X_Values, Y_Values,'.')
# plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]])
# plt.axis([0, 6, 0, 20])
plt
.
xlabel
(
xName
)
# plt.ylabel(yName)
plt
.
ylabel
(
'
$\kappa$
'
)
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$'))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1))
ax
.
grid
(
True
)
# # if angle PLOT :
# # if angle PLOT :
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
# ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment