Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure
Commits
d6c79077
Commit
d6c79077
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Correct Wrong prestrain Formulas
parent
18e38476
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/ClassifyMin.py
+18
-3
18 additions, 3 deletions
src/ClassifyMin.py
src/ClassifyMinVec.py
+4
-2
4 additions, 2 deletions
src/ClassifyMinVec.py
with
22 additions
and
5 deletions
src/ClassifyMin.py
+
18
−
3
View file @
d6c79077
...
@@ -32,7 +32,7 @@ def determinant(q1,q2,q3,q12): # TODO General:M
...
@@ -32,7 +32,7 @@ def determinant(q1,q2,q3,q12): # TODO General:M
def
harmonicMean
(
mu_1
,
beta
,
theta
):
def
harmonicMean
(
mu_1
,
beta
,
theta
):
return
mu_1
*
(
beta
/
(
theta
+
(
1
-
theta
)
*
beta
))
return
mu_1
*
(
beta
/
(
theta
+
(
(
1
-
theta
)
*
beta
))
)
def
arithmeticMean
(
mu_1
,
beta
,
theta
):
def
arithmeticMean
(
mu_1
,
beta
,
theta
):
...
@@ -40,11 +40,13 @@ def arithmeticMean(mu_1, beta, theta):
...
@@ -40,11 +40,13 @@ def arithmeticMean(mu_1, beta, theta):
def
prestrain_b1
(
rho_1
,
beta
,
alpha
,
theta
):
def
prestrain_b1
(
rho_1
,
beta
,
alpha
,
theta
):
return
(
3.0
*
rho_1
/
2.0
)
*
beta
*
(
1
-
(
theta
*
(
1
+
alpha
)))
return
(
3.0
*
rho_1
/
2.0
)
*
(
1
-
(
theta
*
(
1
+
alpha
)))
# return (3.0*rho_1/2.0)*beta*(1-(theta*(1+alpha)))
def
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
):
def
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
):
return
(
3.0
*
rho_1
/
(
4.0
*
((
1.0
-
theta
)
+
theta
*
beta
)))
*
(
1
-
theta
*
(
1
+
beta
*
alpha
))
return
(
3.0
*
rho_1
/
(
2.0
*
((
1.0
-
theta
)
+
theta
*
beta
)))
*
(
1
-
theta
*
(
1
+
beta
*
alpha
))
# return (3.0*rho_1/(4.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha))
# Define function to be minimized
# Define function to be minimized
...
@@ -72,6 +74,11 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
...
@@ -72,6 +74,11 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
# print('q2: ', q2)
# print('q2: ', q2)
b1
=
prestrain_b1
(
rho_1
,
beta
,
alpha
,
theta
)
b1
=
prestrain_b1
(
rho_1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
)
# print('alpha:',alpha)
# print('beta:',beta)
# print('theta:',theta)
return
classifyMin
(
q1
,
q2
,
q3
,
q12
,
b1
,
b2
,
print_Cases
,
print_Output
)
return
classifyMin
(
q1
,
q2
,
q3
,
q12
,
b1
,
b2
,
print_Cases
,
print_Output
)
...
@@ -147,6 +154,7 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
...
@@ -147,6 +154,7 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
# ------------------------------------ Parabolic Case -----------------------------------
# ------------------------------------ Parabolic Case -----------------------------------
if
abs
(
determinant
)
<
epsilon
:
if
abs
(
determinant
)
<
epsilon
:
if
print_Cases
:
print
(
'
P : parabolic case (determinant equal zero)
'
)
if
print_Cases
:
print
(
'
P : parabolic case (determinant equal zero)
'
)
print
(
'
P : parabolic case (determinant equal zero)
'
)
# if print_Cases: print('P : parabolic case (determinant equal zero)')
# if print_Cases: print('P : parabolic case (determinant equal zero)')
# check if B is in range of A
# check if B is in range of A
...
@@ -283,6 +291,9 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
...
@@ -283,6 +291,9 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
# compute a3
# compute a3
# a3 = math.sqrt(2.0*a1*a2) # never needed?
# a3 = math.sqrt(2.0*a1*a2) # never needed?
# print('a1:', a1)
# print('a2:', a2)
# compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e)
# compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e)
e
=
[
math
.
sqrt
((
a1
/
(
a1
+
a2
))),
math
.
sqrt
((
a2
/
(
a1
+
a2
)))]
e
=
[
math
.
sqrt
((
a1
/
(
a1
+
a2
))),
math
.
sqrt
((
a2
/
(
a1
+
a2
)))]
angle
=
math
.
atan2
(
e
[
1
],
e
[
0
])
angle
=
math
.
atan2
(
e
[
1
],
e
[
0
])
...
@@ -294,6 +305,9 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
...
@@ -294,6 +305,9 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
Minimizer
=
np
.
array
([[
a1
,
math
.
sqrt
(
a1
*
a2
)],
[
math
.
sqrt
(
a1
*
a2
),
a2
]],
dtype
=
object
)
Minimizer
=
np
.
array
([[
a1
,
math
.
sqrt
(
a1
*
a2
)],
[
math
.
sqrt
(
a1
*
a2
),
a2
]],
dtype
=
object
)
# Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]])
# Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]])
# MinimizerVec = np.array([a1, a2],dtype=object)
MinimizerVec
=
np
.
array
([
a1
,
a2
])
if
print_Output
:
if
print_Output
:
print
(
'
--- Output ClassifyMin ---
'
)
print
(
'
--- Output ClassifyMin ---
'
)
print
(
"
Minimizing Matrix G:
"
)
print
(
"
Minimizing Matrix G:
"
)
...
@@ -303,6 +317,7 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
...
@@ -303,6 +317,7 @@ def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False)
print
(
"
kappa =
"
,
kappa
)
print
(
"
kappa =
"
,
kappa
)
return
Minimizer
,
angle
,
type
,
kappa
return
Minimizer
,
angle
,
type
,
kappa
# return MinimizerVec, angle, type, kappa #return Minimizer Vector instead
# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
...
...
This diff is collapsed.
Click to expand it.
src/ClassifyMinVec.py
+
4
−
2
View file @
d6c79077
...
@@ -40,11 +40,13 @@ def arithmeticMean(mu_1, beta, theta):
...
@@ -40,11 +40,13 @@ def arithmeticMean(mu_1, beta, theta):
def
prestrain_b1
(
rho_1
,
beta
,
alpha
,
theta
):
def
prestrain_b1
(
rho_1
,
beta
,
alpha
,
theta
):
return
(
3.0
*
rho_1
/
2.0
)
*
beta
*
(
1
-
(
theta
*
(
1
+
alpha
)))
return
(
3.0
*
rho_1
/
2.0
)
*
(
1
-
(
theta
*
(
1
+
alpha
)))
# return (3.0*rho_1/2.0)*beta*(1-(theta*(1+alpha)))
def
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
):
def
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
):
return
(
3.0
*
rho_1
/
(
4.0
*
((
1.0
-
theta
)
+
theta
*
beta
)))
*
(
1
-
theta
*
(
1
+
beta
*
alpha
))
return
(
3.0
*
rho_1
/
(
2.0
*
((
1.0
-
theta
)
+
theta
*
beta
)))
*
(
1
-
theta
*
(
1
+
beta
*
alpha
))
# return (3.0*rho_1/(4.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha))
# Define function to be minimized
# Define function to be minimized
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment