Skip to content
Snippets Groups Projects
dirneucoupling.cc 27.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • Oliver Sander's avatar
    Oliver Sander committed
    #include <config.h>
    
    #include <dune/grid/onedgrid.hh>
    #include <dune/grid/uggrid.hh>
    
    #include <dune/disc/elasticity/linearelasticityassembler.hh>
    #include <dune/disc/operators/p1operator.hh>
    #include <dune/istl/io.hh>
    #include <dune/grid/io/file/amirameshreader.hh>
    #include <dune/grid/io/file/amirameshwriter.hh>
    
    
    #include <dune/common/bitfield.hh>
    #include <dune/common/configparser.hh>
    
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include <dune/ag-common/multigridstep.hh>
    #include <dune/ag-common/iterativesolver.hh>
    #include <dune/ag-common/projectedblockgsstep.hh>
    #ifdef HAVE_IPOPT
    #include <dune/ag-common/linearipopt.hh>
    #endif
    #ifdef HAVE_IPOPT_CPP
    #include <dune/ag-common/quadraticipopt.hh>
    #endif
    #include <dune/ag-common/readbitfield.hh>
    #include <dune/ag-common/energynorm.hh>
    #include <dune/ag-common/boundarypatch.hh>
    #include <dune/ag-common/prolongboundarypatch.hh>
    #include <dune/ag-common/sampleonbitfield.hh>
    #include <dune/ag-common/neumannassembler.hh>
    #include <dune/ag-common/computestress.hh>
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    #include "src/quaternion.hh"
    
    #include "src/rodassembler.hh"
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include "src/configuration.hh"
    #include "src/averageinterface.hh"
    #include "src/rodsolver.hh"
    
    #include "src/roddifference.hh"
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include "src/rodwriter.hh"
    
    // Space dimension
    const int dim = 3;
    
    using namespace Dune;
    using std::string;
    
    Oliver Sander's avatar
    Oliver Sander committed
    using std::vector;
    
    // Some types that I need
    //typedef BCRSMatrix<FieldMatrix<double, dim, dim> > OperatorType;
    //typedef BlockVector<FieldVector<double, dim> >     VectorType;
    typedef vector<Configuration>                      RodSolutionType;
    typedef BlockVector<FieldVector<double, 6> >       RodDifferenceType;
    
    
    // Make a straight rod from two given endpoints
    void makeStraightRod(RodSolutionType& rod, int n,
                         const FieldVector<double,3>& beginning, const FieldVector<double,3>& end)
    {
        // Compute the correct orientation
        Quaternion<double> orientation = Quaternion<double>::identity();
    
        FieldVector<double,3> zAxis(0);
        zAxis[2] = 1;
        FieldVector<double,3> axis = crossProduct(end-beginning, zAxis);
    
        if (axis.two_norm() != 0)
            axis /= -axis.two_norm();
    
        FieldVector<double,3> d3 = end-beginning;
        d3 /= d3.two_norm();
    
        double angle = std::acos(zAxis * d3);
    
        if (angle != 0)
            orientation = Quaternion<double>(axis, angle);
    
        // Set the values
        rod.resize(n);
        for (int i=0; i<n; i++) {
    
            rod[i].r = beginning;
            rod[i].r.axpy(double(i) / (n-1), end-beginning);
            rod[i].q = orientation;
    
        }
    
    
    }
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    int main (int argc, char *argv[]) try
    {
        // Some types that I need
    
        typedef BCRSMatrix<FieldMatrix<double, dim, dim> >   MatrixType;
        typedef BlockVector<FieldVector<double, dim> >       VectorType;
        typedef std::vector<Configuration>                   RodSolutionType;
    
        typedef BlockVector<FieldVector<double, 6> >         RodDifferenceType;
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // parse data file
        ConfigParser parameterSet;
    
        if (argc==2)
            parameterSet.parseFile(argv[1]);
        else
            parameterSet.parseFile("dirneucoupling.parset");
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // read solver settings
    
        const int numLevels            = parameterSet.get<int>("numLevels");
        const double ddTolerance           = parameterSet.get<double>("ddTolerance");
        const int maxDirichletNeumannSteps = parameterSet.get<int>("maxDirichletNeumannSteps");
        const double trTolerance           = parameterSet.get<double>("trTolerance");
        const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps");
    
        const int trVerbosity            = parameterSet.get<int>("trVerbosity");
    
        const int multigridIterations = parameterSet.get<int>("numIt");
        const int nu1              = parameterSet.get<int>("nu1");
        const int nu2              = parameterSet.get<int>("nu2");
        const int mu               = parameterSet.get<int>("mu");
        const int baseIterations   = parameterSet.get<int>("baseIt");
    
        const double mgTolerance     = parameterSet.get<double>("mgTolerance");
    
        const double baseTolerance = parameterSet.get<double>("baseTolerance");
        const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
    
    Oliver Sander's avatar
    Oliver Sander committed
        const double damping         = parameterSet.get<double>("damping");
        string resultPath           = parameterSet.get("resultPath", "");
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // Problem settings
    
    Oliver Sander's avatar
    Oliver Sander committed
        string path = parameterSet.get<string>("path");
        string objectName = parameterSet.get<string>("gridFile");
        string dirichletNodesFile  = parameterSet.get<string>("dirichletNodes");
        string dirichletValuesFile = parameterSet.get<string>("dirichletValues");
        string interfaceNodesFile  = parameterSet.get<string>("interfaceNodes");
        const int numRodBaseElements    = parameterSet.get<int>("numRodBaseElements");
    
        double E      = parameterSet.get<double>("E");
        double nu     = parameterSet.get<double>("nu");
    
        // rod material parameters
        double rodA   = parameterSet.get<double>("rodA");
        double rodJ1  = parameterSet.get<double>("rodJ1");
        double rodJ2  = parameterSet.get<double>("rodJ2");
        double rodE   = parameterSet.get<double>("rodE");
        double rodNu  = parameterSet.get<double>("rodNu");
    
        std::tr1::array<FieldVector<double,3>,2> rodRestEndPoint;
        rodRestEndPoint[0][0] = parameterSet.get<double>("rodRestEndPoint0X");
        rodRestEndPoint[0][1] = parameterSet.get<double>("rodRestEndPoint0Y");
        rodRestEndPoint[0][2] = parameterSet.get<double>("rodRestEndPoint0Z");
        rodRestEndPoint[1][0] = parameterSet.get<double>("rodRestEndPoint1X");
        rodRestEndPoint[1][1] = parameterSet.get<double>("rodRestEndPoint1Y");
        rodRestEndPoint[1][2] = parameterSet.get<double>("rodRestEndPoint1Z");
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        // ///////////////////////////////////////
        //    Create the rod grid
        // ///////////////////////////////////////
    
    Oliver Sander's avatar
    Oliver Sander committed
        typedef OneDGrid RodGridType;
    
    Oliver Sander's avatar
    Oliver Sander committed
        RodGridType rodGrid(numRodBaseElements, 0, (rodRestEndPoint[1]-rodRestEndPoint[0]).two_norm());
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // ///////////////////////////////////////
        //    Create the grid for the 3d object
        // ///////////////////////////////////////
    
    Oliver Sander's avatar
    Oliver Sander committed
        typedef UGGrid<dim> GridType;
    
    Oliver Sander's avatar
    Oliver Sander committed
        GridType grid;
        grid.setRefinementType(GridType::COPY);
        
        AmiraMeshReader<GridType>::read(grid, path + objectName);
    
    
        // //////////////////////////////////////
        //   Globally refine grids
        // //////////////////////////////////////
    
        rodGrid.globalRefine(numLevels-1);
        grid.globalRefine(numLevels-1);
    
    
        std::vector<BitField> dirichletNodes(1);
    
        RodSolutionType rodX(rodGrid.size(1));
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // //////////////////////////
        //   Initial solution
        // //////////////////////////
    
    Oliver Sander's avatar
    Oliver Sander committed
    #if 0
    
    Oliver Sander's avatar
    Oliver Sander committed
        for (int i=0; i<rodX.size(); i++) {
    
            rodX[i].r[0] = 0.5;
            rodX[i].r[1] = 0.5;
    
            rodX[i].r[2] = 5 + (i* 5.0 /(rodX.size()-1));
    
    Oliver Sander's avatar
    Oliver Sander committed
            rodX[i].q = Quaternion<double>::identity();
        }
    
    Oliver Sander's avatar
    Oliver Sander committed
    #endif
        makeStraightRod(rodX, rodGrid.size(1), rodRestEndPoint[0], rodRestEndPoint[1]);
    
        // /////////////////////////////////////////
        //   Read Dirichlet values
        // /////////////////////////////////////////
    
    Oliver Sander's avatar
    Oliver Sander committed
        rodX.back().r[0] = parameterSet.get("dirichletValueX", rodRestEndPoint[1][0]);
        rodX.back().r[1] = parameterSet.get("dirichletValueY", rodRestEndPoint[1][1]);
        rodX.back().r[2] = parameterSet.get("dirichletValueZ", rodRestEndPoint[1][2]);
    
    
        FieldVector<double,3> axis;
        axis[0] = parameterSet.get("dirichletAxisX", double(0));
        axis[1] = parameterSet.get("dirichletAxisY", double(0));
        axis[2] = parameterSet.get("dirichletAxisZ", double(0));
        double angle = parameterSet.get("dirichletAngle", double(0));
    
        rodX.back().q = Quaternion<double>(axis, M_PI*angle/180);
    
    
        // Backup initial rod iterate for later reference
        RodSolutionType initialIterateRod = rodX;
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        int toplevel = rodGrid.maxLevel();
    
        // /////////////////////////////////////////////////////
        //   Determine the Dirichlet nodes
        // /////////////////////////////////////////////////////
    
        std::vector<VectorType> dirichletValues;
    
    Oliver Sander's avatar
    Oliver Sander committed
        dirichletValues.resize(toplevel+1);
        dirichletValues[0].resize(grid.size(0, dim));
        AmiraMeshReader<int>::readFunction(dirichletValues[0], path + dirichletValuesFile);
    
    
        std::vector<BoundaryPatch<GridType> > dirichletBoundary;
    
        dirichletBoundary.resize(numLevels);
    
    Oliver Sander's avatar
    Oliver Sander committed
        dirichletBoundary[0].setup(grid, 0);
        readBoundaryPatch(dirichletBoundary[0], path + dirichletNodesFile);
        PatchProlongator<GridType>::prolong(dirichletBoundary);
    
        dirichletNodes.resize(toplevel+1);
        for (int i=0; i<=toplevel; i++) {
            
    
            dirichletNodes[i].resize( dim*grid.size(i,dim));
    
    Oliver Sander's avatar
    Oliver Sander committed
    
            for (int j=0; j<grid.size(i,dim); j++)
                for (int k=0; k<dim; k++)
                    dirichletNodes[i][j*dim+k] = dirichletBoundary[i].containsVertex(j);
            
        }
    
    
        sampleOnBitField(grid, dirichletValues, dirichletNodes);
    
        // /////////////////////////////////////////////////////
        //   Determine the interface boundary
        // /////////////////////////////////////////////////////
        std::vector<BoundaryPatch<GridType> > interfaceBoundary;
    
        interfaceBoundary.resize(numLevels);
    
        interfaceBoundary[0].setup(grid, 0);
        readBoundaryPatch(interfaceBoundary[0], path + interfaceNodesFile);
        PatchProlongator<GridType>::prolong(interfaceBoundary);
    
    
        // ////////////////////////////////////////// 
    
    Oliver Sander's avatar
    Oliver Sander committed
        //   Assemble 3d linear elasticity problem
        // //////////////////////////////////////////
        LeafP1Function<GridType,double,dim> u(grid),f(grid);
    
    Oliver Sander's avatar
    Oliver Sander committed
        LinearElasticityLocalStiffness<GridType,double> lstiff(E, nu);
    
    Oliver Sander's avatar
    Oliver Sander committed
        LeafP1OperatorAssembler<GridType,double,dim> hessian3d(grid);
        hessian3d.assemble(lstiff,u,f);
    
    
        // ////////////////////////////////////////////////////////////
        //    Create solution and rhs vectors
        // ////////////////////////////////////////////////////////////
        
    
    Oliver Sander's avatar
    Oliver Sander committed
        VectorType x3d(grid.size(toplevel,dim));
        VectorType rhs3d(grid.size(toplevel,dim));
    
        // No external forces
        rhs3d = 0;
    
        // Set initial solution
        x3d = 0;
        for (int i=0; i<x3d.size(); i++) 
            for (int j=0; j<dim; j++)
                if (dirichletNodes[toplevel][i*dim+j])
                    x3d[i][j] = dirichletValues[toplevel][i][j];
    
    
        // ///////////////////////////////////////////
        //   Create a solver for the rod problem
        // ///////////////////////////////////////////
        RodAssembler<RodGridType> rodAssembler(rodGrid);
    
    Oliver Sander's avatar
    Oliver Sander committed
        rodAssembler.setShapeAndMaterial(rodA, rodJ1, rodJ2, rodE, rodNu);
    
    
    
        RodSolver<RodGridType> rodSolver;
        rodSolver.setup(rodGrid, 
                        &rodAssembler,
                        rodX,
    
                        trTolerance,
    
                        maxTrustRegionSteps,
                        initialTrustRegionRadius,
                        multigridIterations,
                        mgTolerance,
                        mu, nu1, nu2,
                        baseIterations,
    
                        baseTolerance,
                        false);
    
        switch (trVerbosity) {
        case 0:
            rodSolver.verbosity_ = Solver::QUIET;   break;
        case 1:
            rodSolver.verbosity_ = Solver::REDUCED;   break;
        default:
            rodSolver.verbosity_ = Solver::FULL;   break;
        }
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        // ////////////////////////////////
        //   Create a multigrid solver
        // ////////////////////////////////
    
        // First create a gauss-seidel base solver
    
    Oliver Sander's avatar
    Oliver Sander committed
    #ifdef HAVE_IPOPT
    
    Oliver Sander's avatar
    Oliver Sander committed
        LinearIPOptSolver<VectorType> baseSolver;
    
    Oliver Sander's avatar
    Oliver Sander committed
    #endif
    #ifdef HAVE_IPOPT_CPP
        QuadraticIPOptSolver<MatrixType,VectorType> baseSolver;
    #endif
    
    Oliver Sander's avatar
    Oliver Sander committed
        baseSolver.verbosity_ = NumProc::QUIET;
        baseSolver.tolerance_ = baseTolerance;
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // Make pre and postsmoothers
    
        BlockGSStep<MatrixType, VectorType> presmoother, postsmoother;
    
        MultigridStep<MatrixType, VectorType> multigridStep(*hessian3d, x3d, rhs3d, 1);
    
        multigridStep.setMGType(mu, nu1, nu2);
        multigridStep.dirichletNodes_    = &dirichletNodes;
        multigridStep.basesolver_        = &baseSolver;
        multigridStep.presmoother_       = &presmoother;
        multigridStep.postsmoother_      = &postsmoother;    
    
    Oliver Sander's avatar
    Oliver Sander committed
        multigridStep.verbosity_         = Solver::QUIET;
    
        EnergyNorm<MatrixType, VectorType> energyNorm(multigridStep);
    
        IterativeSolver<MatrixType, VectorType> solver(&multigridStep,
    
    Oliver Sander's avatar
    Oliver Sander committed
                                                       // IPOpt doesn't like to be started in the solution
                                                       (numLevels!=1) ? multigridIterations : 1,
    
                                                       mgTolerance,
                                                       &energyNorm,
    
                                                       Solver::QUIET);
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        // ////////////////////////////////////
        //   Create the transfer operators
        // ////////////////////////////////////
    
        for (int k=0; k<multigridStep.mgTransfer_.size(); k++)
            delete(multigridStep.mgTransfer_[k]);
    
        multigridStep.mgTransfer_.resize(toplevel);
    
        for (int i=0; i<multigridStep.mgTransfer_.size(); i++){
    
    Oliver Sander's avatar
    Oliver Sander committed
            TruncatedMGTransfer<VectorType>* newTransferOp = new TruncatedMGTransfer<VectorType>;
            newTransferOp->setup(grid,i,i+1);
    
            multigridStep.mgTransfer_[i] = newTransferOp;
    
    Oliver Sander's avatar
    Oliver Sander committed
        }
    
        // /////////////////////////////////////////////////////
        //   Dirichlet-Neumann Solver
        // /////////////////////////////////////////////////////
    
        // Init interface value
    
        Configuration referenceInterface = rodX[0];
        Configuration lambda = referenceInterface;
    
        FieldVector<double,3> lambdaForce(0);
        FieldVector<double,3> lambdaTorque(0);
    
        //
        double normOfOldCorrection = 0;
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        for (int i=0; i<maxDirichletNeumannSteps; i++) {
            
            std::cout << "----------------------------------------------------" << std::endl;
            std::cout << "      Dirichlet-Neumann Step Number: " << i << std::endl;
            std::cout << "----------------------------------------------------" << std::endl;
            
    
            // Backup of the current solution for the error computation later on
    
    Oliver Sander's avatar
    Oliver Sander committed
            VectorType      oldSolution3d  = x3d;
            RodSolutionType oldSolutionRod = rodX;
    
    Oliver Sander's avatar
    Oliver Sander committed
            // //////////////////////////////////////////////////
            //   Dirichlet step for the rod
            // //////////////////////////////////////////////////
    
            rodX[0] = lambda;
    
            rodSolver.setInitialSolution(rodX);
    
    Oliver Sander's avatar
    Oliver Sander committed
            rodSolver.solve();
    
    
            rodX = rodSolver.getSol();
    
    
    Oliver Sander's avatar
    Oliver Sander committed
    //         for (int j=0; j<rodX.size(); j++)
    //             std::cout << rodX[j] << std::endl;
    
    Oliver Sander's avatar
    Oliver Sander committed
            // ///////////////////////////////////////////////////////////
            //   Extract Neumann values and transfer it to the 3d object
            // ///////////////////////////////////////////////////////////
    
    
            BitField couplingBitfield(rodX.size(),false);
    
            // Using that index 0 is always the left boundary for a uniformly refined OneDGrid
    
            couplingBitfield[0] = true;
            BoundaryPatch<RodGridType> couplingBoundary(rodGrid, rodGrid.maxLevel(), couplingBitfield);
    
    
            FieldVector<double,dim> resultantForce, resultantTorque;
            resultantForce  = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorque);
    
            std::cout << "resultant force: " << resultantForce << std::endl;
    
            std::cout << "resultant torque: " << resultantTorque << std::endl;
    
    
    #if 1
            VectorType neumannValues(rhs3d.size());
    
            // Using that index 0 is always the left boundary for a uniformly refined OneDGrid
            computeAveragePressureIPOpt<GridType>(resultantForce, resultantTorque, 
                                                  interfaceBoundary[grid.maxLevel()], 
                                                  rodX[0],
                                                  neumannValues);
    
            rhs3d = 0;
            assembleAndAddNeumannTerm<GridType, VectorType>(interfaceBoundary[grid.maxLevel()],
                                                            neumannValues,
                                                            rhs3d);
    
    #else
    
    #ifndef HAVE_LAPACKPP
    #error You need LaPack++ for this!
    #endif
    
            // For the time being the Neumann data coming from the rod is a dg function (== not continuous)
            // Maybe that is not necessary
            DGIndexSet<GridType> dgIndexSet(grid,grid.maxLevel());
            dgIndexSet.setup(grid,grid.maxLevel());
    
            VectorType neumannValues(dgIndexSet.size());
    
    
            // Using that index 0 is always the left boundary for a uniformly refined OneDGrid
    
    Oliver Sander's avatar
    Oliver Sander committed
            computeAveragePressure<GridType>(resultantForce, resultantTorque, 
    
                                                  interfaceBoundary[grid.maxLevel()], 
                                                  rodX[0],
                                                  neumannValues);
    
    
            rhs3d = 0;
            assembleAndAddNeumannTerm<GridType, VectorType>(interfaceBoundary[grid.maxLevel()],
    
                                                            neumannValues,
                                                            rhs3d);
    
    Oliver Sander's avatar
    Oliver Sander committed
            // ///////////////////////////////////////////////////////////
            //   Solve the Neumann problem for the 3d body
            // ///////////////////////////////////////////////////////////
    
            multigridStep.setProblem(*hessian3d, x3d, rhs3d, grid.maxLevel()+1);
            
            solver.preprocess();
            multigridStep.preprocess();
            
            solver.solve();
            
            x3d = multigridStep.getSol();
    
    Oliver Sander's avatar
    Oliver Sander committed
    
            // ///////////////////////////////////////////////////////////
            //   Extract new interface position and orientation
            // ///////////////////////////////////////////////////////////
    
    Oliver Sander's avatar
    Oliver Sander committed
            Configuration averageInterface;
    
            computeAverageInterface(interfaceBoundary[toplevel], x3d, averageInterface);
    
    
            //averageInterface.r[0] = averageInterface.r[1] = 0;
            //averageInterface.q = Quaternion<double>::identity();
    
            std::cout << "average interface: " << averageInterface << std::endl;
    
            std::cout << "director 0:  " << averageInterface.q.director(0) << std::endl;
            std::cout << "director 1:  " << averageInterface.q.director(1) << std::endl;
            std::cout << "director 2:  " << averageInterface.q.director(2) << std::endl;
            std::cout << std::endl;
    
    
    Oliver Sander's avatar
    Oliver Sander committed
            // ///////////////////////////////////////////////////////////
            //   Compute new damped interface value
            // ///////////////////////////////////////////////////////////
    
            for (int j=0; j<dim; j++)
    
    Oliver Sander's avatar
    Oliver Sander committed
                lambda.r[j] = (1-damping) * lambda.r[j] 
                    + damping * (referenceInterface.r[j] + averageInterface.r[j]);
    
            lambda.q = Quaternion<double>::interpolate(lambda.q, 
                                                       referenceInterface.q.mult(averageInterface.q), 
    
    Oliver Sander's avatar
    Oliver Sander committed
                                                       damping);
    
            std::cout << "Lambda: " << lambda << std::endl;
    
            // ////////////////////////////////////////////////////////////////////////
            //   Write the two iterates to disk for later convergence rate measurement
            // ////////////////////////////////////////////////////////////////////////
    
            // First the 3d body
            char iSolFilename[100];
            sprintf(iSolFilename, "tmp/intermediate3dSolution_%04d", i);
                
            FILE* fp = fopen(iSolFilename, "wb");
            if (!fp)
                DUNE_THROW(SolverError, "Couldn't open file " << iSolFilename << " for writing");
                
            for (int j=0; j<x3d.size(); j++)
                for (int k=0; k<dim; k++)
                    fwrite(&x3d[j][k], sizeof(double), 1, fp);
    
            fclose(fp);
    
            // Then the rod
            char iRodFilename[100];
            sprintf(iRodFilename, "tmp/intermediateRodSolution_%04d", i);
    
            FILE* fpRod = fopen(iRodFilename, "wb");
            if (!fpRod)
                DUNE_THROW(SolverError, "Couldn't open file " << iRodFilename << " for writing");
                
            for (int j=0; j<rodX.size(); j++) {
    
                for (int k=0; k<dim; k++)
                    fwrite(&rodX[j].r[k], sizeof(double), 1, fpRod);
    
                for (int k=0; k<4; k++)  // 3d hardwired here!
                    fwrite(&rodX[j].q[k], sizeof(double), 1, fpRod);
    
            }
    
            fclose(fpRod);
    
            // ////////////////////////////////////////////
            //   Compute error in the energy norm
            // ////////////////////////////////////////////
    
            // the 3d body
    
            double oldNorm = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, *hessian3d);
    
            oldSolution3d -= x3d;
    
            double normOfCorrection = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, *hessian3d);
    
    Oliver Sander's avatar
    Oliver Sander committed
            double max3dRelCorrection = 0;
            for (size_t j=0; j<x3d.size(); j++)
                for (int k=0; k<dim; k++)
                    max3dRelCorrection = std::max(max3dRelCorrection, 
                                                  std::fabs(oldSolution3d[j][k])/ std::fabs(x3d[j][k]));
    
    
            RodDifferenceType rodDiff = computeRodDifference(oldSolutionRod, rodX);
            double maxRodRelCorrection = 0;
            for (size_t j=0; j<rodX.size(); j++)
                for (int k=0; k<dim; k++)
                    maxRodRelCorrection = std::max(maxRodRelCorrection, 
                                                  std::fabs(rodDiff[j][k])/ std::fabs(rodX[j].r[k]));
    
            double maxRodCorrection = computeRodDifference(oldSolutionRod, rodX).infinity_norm();
            double max3dCorrection  = oldSolution3d.infinity_norm();
            std::cout << "rod correction: " << maxRodCorrection
                      << "    rod rel correction: " <<  maxRodRelCorrection
                      << "    3d correction: " <<  max3dCorrection
                      << "    3d rel correction: " <<  max3dRelCorrection << std::endl;
            
    
    
            oldNorm = std::sqrt(oldNorm);
    
            normOfCorrection = std::sqrt(normOfCorrection);
    
            double relativeError = normOfCorrection / oldNorm;
    
            double convRate = normOfCorrection / normOfOldCorrection;
    
            normOfOldCorrection = normOfCorrection;
    
            // Output
    
            std::cout << "DD iteration: " << i << "  --  ||u^{n+1} - u^n|| / ||u^n||: " << relativeError << ",      "
    
                      << "convrate " << convRate << "\n";
    
    
    Oliver Sander's avatar
    Oliver Sander committed
            //if (relativeError < ddTolerance)
            if (std::max(max3dRelCorrection,maxRodRelCorrection) < ddTolerance)
    
    
    
        // //////////////////////////////////////////////////////////
        //   Recompute and compare against exact solution
        // //////////////////////////////////////////////////////////
        VectorType exactSol3d       = x3d;
        RodSolutionType exactSolRod = rodX;
    
        // //////////////////////////////////////////////////////////
        //   Compute hessian of the rod functional at the exact solution
        //   for use of the energy norm it creates.
        // //////////////////////////////////////////////////////////
    
        BCRSMatrix<FieldMatrix<double, 6, 6> > hessianRod;
        MatrixIndexSet indices(exactSolRod.size(), exactSolRod.size());
        rodAssembler.getNeighborsPerVertex(indices);
        indices.exportIdx(hessianRod);
    
    Oliver Sander's avatar
    Oliver Sander committed
        rodAssembler.assembleMatrixFD(exactSolRod, hessianRod);
    
    
    
        double error = std::numeric_limits<double>::max();
        double oldError = 0;
    
        VectorType      intermediateSol3d(x3d.size());
        RodSolutionType intermediateSolRod(rodX.size());
    
        // Compute error of the initial 3d solution
        
        // This should really be exactSol-initialSol, but we're starting
        // from zero anyways
    
        oldError += EnergyNorm<MatrixType,VectorType>::normSquared(exactSol3d, *hessian3d);
    
        // Error of the initial rod iterate
        RodDifferenceType rodDifference = computeRodDifference(initialIterateRod, exactSolRod);
    
        oldError += EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod);
    
    
        oldError = std::sqrt(oldError);
    
    
        // Store the history of total conv rates so we can filter out numerical
        // dirt in the end.
    
        std::vector<double> totalConvRate(maxDirichletNeumannSteps+1);
    
        totalConvRate[0] = 1;
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        double oldConvRate = 100;
        bool firstTime = true;
        std::stringstream levelAsAscii, dampingAsAscii;
        levelAsAscii << numLevels;
        dampingAsAscii << damping;
        std::string filename = resultPath + "convrate_" + levelAsAscii.str() + "_" + dampingAsAscii.str();
    
    
        int i;
        for (i=0; i<maxDirichletNeumannSteps; i++) {
            
            // /////////////////////////////////////////////////////
            //   Read iteration from file
            // /////////////////////////////////////////////////////
    
            // Read 3d solution from file
            char iSolFilename[100];
            sprintf(iSolFilename, "tmp/intermediate3dSolution_%04d", i);
                
            FILE* fpInt = fopen(iSolFilename, "rb");
            if (!fpInt)
                DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
            for (int j=0; j<intermediateSol3d.size(); j++)
                fread(&intermediateSol3d[j], sizeof(double), dim, fpInt);
            
            fclose(fpInt);
    
            // Read rod solution from file
            sprintf(iSolFilename, "tmp/intermediateRodSolution_%04d", i);
                
            fpInt = fopen(iSolFilename, "rb");
            if (!fpInt)
                DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
            for (int j=0; j<intermediateSolRod.size(); j++) {
                fread(&intermediateSolRod[j].r, sizeof(double), dim, fpInt);
                fread(&intermediateSolRod[j].q, sizeof(double), 4, fpInt);
            }
            
            fclose(fpInt);
    
    
    
            // /////////////////////////////////////////////////////
            //   Compute error
            // /////////////////////////////////////////////////////
            
            VectorType solBackup0 = intermediateSol3d;
            solBackup0 -= exactSol3d;
    
            RodDifferenceType rodDifference = computeRodDifference(exactSolRod, intermediateSolRod);
            
    
            error = std::sqrt(EnergyNorm<MatrixType,VectorType>::normSquared(solBackup0, *hessian3d)
    
                              EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod));
    
            
    
            double convRate = error / oldError;
    
            totalConvRate[i+1] = totalConvRate[i] * convRate;
    
    
            // Output
            std::cout << "DD iteration: " << i << "  error : " << error << ",      "
                      << "convrate " << convRate 
    
                      << "    total conv rate " << std::pow(totalConvRate[i+1], 1/((double)i+1)) << std::endl;
    
    Oliver Sander's avatar
    Oliver Sander committed
            // Convergence rates tend to stay fairly constant after a few initial iterates.
            // Only when we hit numerical dirt are they starting to wiggle around wildly.
            // We use this to detect 'the' convergence rate as the last averaged rate before
            // we hit the dirt.
            if (convRate > oldConvRate + 0.1 && i > 5 && firstTime) {
    
                std::cout << "Damping: " << damping
                          << "   convRate: " << std::pow(totalConvRate[i], 1/((double)i)) 
                          << std::endl;
    
                std::ofstream convRateFile(filename.c_str());
                convRateFile << damping << "   " 
                             << std::pow(totalConvRate[i], 1/((double)i)) 
                             << std::endl;
    
                firstTime = false;
            }
    
    
            if (error < 1e-12)
              break;
    
            oldError = error;
    
    Oliver Sander's avatar
    Oliver Sander committed
            oldConvRate = convRate;
    
    Oliver Sander's avatar
    Oliver Sander committed
        // Convergence without dirt: write the overall convergence rate now
        if (firstTime) {
            int backTrace = std::min(size_t(4),totalConvRate.size());
            std::cout << "Damping: " << damping
                      << "   convRate: " << std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace)) 
                      << std::endl;
            
            std::ofstream convRateFile(filename.c_str());
            convRateFile << damping << "   " 
                         << std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace)) 
                         << std::endl;
        }
    
    Oliver Sander's avatar
    Oliver Sander committed
        // //////////////////////////////
        //   Output result
        // //////////////////////////////
    
        LeafAmiraMeshWriter<GridType> amiraMeshWriter(grid);
        amiraMeshWriter.addVertexData(x3d, grid.leafIndexSet());
    
    Oliver Sander's avatar
    Oliver Sander committed
    
        BlockVector<FieldVector<double,1> > stress;
        Stress<GridType,dim>::getStress(grid, x3d, stress, E, nu);
        amiraMeshWriter.addVertexData(stress, grid.leafIndexSet());
    
    
        amiraMeshWriter.write(resultPath + "grid.result");
    
        writeRod(rodX, resultPath + "rod3d.result");
    
    Oliver Sander's avatar
    Oliver Sander committed
    
     } catch (Exception e) {
    
        std::cout << e << std::endl;
    
     }