Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include <config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers
#include <adolc/taping.h>
#include <dune/gfe/adolcnamespaceinjections.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/grid/io/file/vtk.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/functions/vtkbasisgridfunction.hh>
#include <dune/fufem/functiontools/boundarydofs.hh>
#include <dune/fufem/functiontools/basisinterpolator.hh>
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include <dune/fufem/functionspacebases/p2nodalbasis.hh>
#include <dune/fufem/dunepython.hh>
#include <dune/solvers/solvers/iterativesolver.hh>
#include <dune/solvers/norms/energynorm.hh>
#include <dune/gfe/localadolcstiffness.hh>
#include <dune/gfe/stvenantkirchhoffenergy.hh>
#include <dune/gfe/feassembler.hh>
#include <dune/gfe/trustregionsolver.hh>
// grid dimension
const int dim = 3;
using namespace Dune;
/** \brief A constant vector-valued function, for simple Neumann boundary values */
struct NeumannFunction
: public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3> >
{
NeumannFunction(const FieldVector<double,3> values,
double homotopyParameter)
: values_(values),
homotopyParameter_(homotopyParameter)
{}
void evaluate(const FieldVector<double, dim>& x, FieldVector<double,3>& out) const {
out = 0;
out.axpy(-homotopyParameter_, values_);
}
FieldVector<double,3> values_;
double homotopyParameter_;
};
int main (int argc, char *argv[]) try
{
// initialize MPI, finalize is done automatically on exit
Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv);
// Start Python interpreter
Python::start();
Python::Reference main = Python::import("__main__");
Python::run("import math");
//feenableexcept(FE_INVALID);
Python::runStream()
<< std::endl << "import sys"
<< std::endl << "sys.path.append('/home/sander/dune/dune-gfe/')"
<< std::endl;
typedef std::vector<FieldVector<double,dim> > SolutionType;
// parse data file
ParameterTree parameterSet;
// if (argc != 2)
// DUNE_THROW(Exception, "Usage: ./hencky-material <parameter file>");
ParameterTreeParser::readINITree(argv[1], parameterSet);
ParameterTreeParser::readOptions(argc, argv, parameterSet);
// read solver settings
const int numLevels = parameterSet.get<int>("numLevels");
int numHomotopySteps = parameterSet.get<int>("numHomotopySteps");
const double tolerance = parameterSet.get<double>("tolerance");
const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps");
const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
const int multigridIterations = parameterSet.get<int>("numIt");
const int nu1 = parameterSet.get<int>("nu1");
const int nu2 = parameterSet.get<int>("nu2");
const int mu = parameterSet.get<int>("mu");
const int baseIterations = parameterSet.get<int>("baseIt");
const double mgTolerance = parameterSet.get<double>("mgTolerance");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
const bool instrumented = parameterSet.get<bool>("instrumented");
std::string resultPath = parameterSet.get("resultPath", "");
// ///////////////////////////////////////
// Create the grid
// ///////////////////////////////////////
typedef UGGrid<dim> GridType;
shared_ptr<GridType> grid;
FieldVector<double,dim> lower(0), upper(1);
if (parameterSet.get<bool>("structuredGrid")) {
lower = parameterSet.get<FieldVector<double,dim> >("lower");
upper = parameterSet.get<FieldVector<double,dim> >("upper");
array<unsigned int,dim> elements = parameterSet.get<array<unsigned int,dim> >("elements");
grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
} else {
std::string path = parameterSet.get<std::string>("path");
std::string gridFile = parameterSet.get<std::string>("gridFile");
grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
}
grid->globalRefine(numLevels-1);
grid->loadBalance();
if (mpiHelper.rank()==0)
std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl;
typedef GridType::LeafGridView GridView;
GridView gridView = grid->leafGridView();
// typedef P1NodalBasis<GridView,double> FEBasis;
typedef P2NodalBasis<GridView,double> FEBasis;
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
FEBasis feBasis(gridView);
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
BitSetVector<1> dirichletVertices(gridView.size(dim), false);
BitSetVector<1> neumannVertices(gridView.size(dim), false);
GridType::Codim<dim>::LeafIterator vIt = gridView.begin<dim>();
GridType::Codim<dim>::LeafIterator vEndIt = gridView.end<dim>();
const GridView::IndexSet& indexSet = gridView.indexSet();
// Make Python function that computes which vertices are on the Dirichlet boundary,
// based on the vertex positions.
std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")");
PythonFunction<FieldVector<double,dim>, bool> pythonDirichletVertices(Python::evaluate(lambda));
// Same for the Neumann boundary
lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")");
PythonFunction<FieldVector<double,dim>, bool> pythonNeumannVertices(Python::evaluate(lambda));
for (; vIt!=vEndIt; ++vIt) {
bool isDirichlet;
pythonDirichletVertices.evaluate(vIt->geometry().corner(0), isDirichlet);
dirichletVertices[indexSet.index(*vIt)] = isDirichlet;
bool isNeumann;
pythonNeumannVertices.evaluate(vIt->geometry().corner(0), isNeumann);
neumannVertices[indexSet.index(*vIt)] = isNeumann;
}
BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices);
if (mpiHelper.rank()==0)
std::cout << "Neumann boundary has " << neumannBoundary.numFaces() << " faces\n";
BitSetVector<1> dirichletNodes(feBasis.size(), false);
constructBoundaryDofs(dirichletBoundary,feBasis,dirichletNodes);
BitSetVector<1> neumannNodes(feBasis.size(), false);
constructBoundaryDofs(neumannBoundary,feBasis,neumannNodes);
BitSetVector<dim> dirichletDofs(feBasis.size(), false);
for (size_t i=0; i<feBasis.size(); i++)
if (dirichletNodes[i][0])
for (int j=0; j<dim; j++)
dirichletDofs[i][j] = true;
// //////////////////////////
// Initial iterate
// //////////////////////////
SolutionType x(feBasis.size());
lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")");
PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > pythonInitialDeformation(Python::evaluate(lambda));
std::vector<FieldVector<double,3> > v;
Functions::interpolate(feBasis, v, pythonInitialDeformation);
for (size_t i=0; i<x.size(); i++)
x[i] = v[i];
lambda = std::string("lambda x: (") + parameterSet.get<std::string>("identity") + std::string(")");
PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > pythonIdentity(Python::evaluate(lambda));
SolutionType identity;
Functions::interpolate(feBasis, identity, pythonIdentity);
////////////////////////////////////////////////////////
// Main homotopy loop
////////////////////////////////////////////////////////
// Output initial iterate (of homotopy loop)
VTKWriter<GridType::LeafGridView> vtkWriter(grid->leafGridView());
BlockVector<FieldVector<double,3> > displacement(x.size());
for (auto it = grid->leafGridView().template begin<dim>(); it != grid->leafGridView().template end<dim>(); ++it)
{
size_t idx = grid->leafGridView().indexSet().index(*it);
displacement[idx] = x[idx] - it->geometry().corner(0);
//std::cout << "idx: " << idx << " coordinate: " << it->geometry().corner(0) << std::endl;
}
Dune::shared_ptr<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > > vtkDisplacement
= Dune::make_shared<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > >
(feBasis, displacement, "Displacement");
vtkWriter.addVertexData(vtkDisplacement);
vtkWriter.write(resultPath + "hencky_homotopy_0");
for (int i=0; i<numHomotopySteps; i++) {
double homotopyParameter = (i+1)*(1.0/numHomotopySteps);
if (mpiHelper.rank()==0)
std::cout << "Homotopy step: " << i << ", parameter: " << homotopyParameter << std::endl;
// ////////////////////////////////////////////////////////////
// Create an assembler for the energy functional
// ////////////////////////////////////////////////////////////
const ParameterTree& materialParameters = parameterSet.sub("materialParameters");
shared_ptr<NeumannFunction> neumannFunction;
if (parameterSet.hasKey("neumannValues"))
neumannFunction = make_shared<NeumannFunction>(parameterSet.get<FieldVector<double,3> >("neumannValues"),
homotopyParameter);
std::cout << "Neumann values: " << parameterSet.get<FieldVector<double,3> >("neumannValues") << std::endl;
if (mpiHelper.rank() == 0) {
std::cout << "Material parameters:" << std::endl;
materialParameters.report();
}
// Assembler using ADOL-C
StVenantKirchhoffEnergy<GridView,
FEBasis::LocalFiniteElement,
adouble> henckyEnergy(materialParameters,
&neumannBoundary,
neumannFunction.get());
LocalADOLCStiffness<GridView,
FEBasis::LocalFiniteElement,
SolutionType> localADOLCStiffness(&henckyEnergy);
FEAssembler<FEBasis,SolutionType> assembler(gridView, &localADOLCStiffness);
std::vector<FieldVector<double,3> > pointLoads(x.size());
std::fill(pointLoads.begin(), pointLoads.end(), 0);
// pointLoads[1372] = parameterSet.get<FieldVector<double,3> >("neumannValues");
// pointLoads[1372] *= 0.5;
// /////////////////////////////////////////////////
// Create a Riemannian trust-region solver
// /////////////////////////////////////////////////
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
solver.setup(*grid,
&assembler,
x,
dirichletDofs,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
baseTolerance,
pointLoads
);
solver.identity_ = identity;
////////////////////////////////////////////////////////
// Set Dirichlet values
////////////////////////////////////////////////////////
Python::Reference dirichletValuesClass = Python::import(parameterSet.get<std::string>("problem") + "-dirichlet-values");
Python::Callable C = dirichletValuesClass.get("DirichletValues");
// Call a constructor.
Python::Reference dirichletValuesPythonObject = C(homotopyParameter);
// Extract object member functions as Dune functions
PythonFunction<FieldVector<double,dim>, FieldVector<double,3> > dirichletValues(dirichletValuesPythonObject.get("dirichletValues"));
std::vector<FieldVector<double,3> > ddV;
Functions::interpolate(feBasis, ddV, dirichletValues, dirichletDofs);
for (size_t j=0; j<x.size(); j++)
if (dirichletNodes[j][0])
x[j] = ddV[j];
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
solver.setInitialIterate(x);
solver.solve();
x = solver.getSol();
// Output result of each homotopy step
VTKWriter<GridType::LeafGridView> vtkWriter(grid->leafGridView());
BlockVector<FieldVector<double,3> > displacement(x.size());
for (auto it = grid->leafGridView().template begin<dim>(); it != grid->leafGridView().template end<dim>(); ++it)
{
size_t idx = grid->leafGridView().indexSet().index(*it);
displacement[idx] = x[idx] - it->geometry().corner(0);
}
Dune::shared_ptr<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > > vtkDisplacement
= Dune::make_shared<VTKBasisGridFunction<FEBasis,BlockVector<FieldVector<double,3> > > >
(feBasis, displacement, "Displacement");
vtkWriter.addVertexData(vtkDisplacement);
vtkWriter.write(resultPath + "hencky_homotopy_" + std::to_string(i+1));
}
// //////////////////////////////
// Output result
// //////////////////////////////
// finally: compute the average deformation of the Neumann boundary
// That is what we need for the locking tests
FieldVector<double,3> averageDef(0);
for (size_t i=0; i<x.size(); i++)
if (neumannNodes[i][0])
{
averageDef += x[i];
std::cout << "i: " << i << ", pos: " << x[i] << std::endl;
}
averageDef /= neumannNodes.count();
if (mpiHelper.rank()==0)
{
std::cout << "Neumann value = " << parameterSet.get<std::string>("neumannValues") << std::endl;
std::cout << "Neumann value = " << parameterSet.get<FieldVector<double,dim> >("neumannValues") << " "
<< ", average deflection: " << averageDef << std::endl;
}
} catch (Exception e) {
std::cout << e << std::endl;
}