Newer
Older
#include <config.h>
#include <dune/grid/onedgrid.hh>
#include <dune/fem/lagrangebase.hh>
#include <dune/istl/io.hh>
//#include "../common/boundarytreatment.hh"
#include "../common/boundarypatch.hh"
#include <dune/common/bitfield.hh>
//#include "../common/readbitfield.hh"
#include "src/rodassembler.hh"
//#include "../common/linearipopt.hh"
#include "../common/projectedblockgsstep.hh"
#include "../contact/src/contactmmgstep.hh"
#include <dune/solver/iterativesolver.hh>
#include "../common/geomestimator.hh"
#include "../common/energynorm.hh"
#include <dune/common/configparser.hh>
// Choose a solver
//#define IPOPT
//#define GAUSS_SEIDEL
#define MULTIGRID
// Number of degrees of freedom:
// 3 (x, y, theta) for a planar rod
const int blocksize = 3;
using namespace Dune;
using std::string;
int main (int argc, char *argv[]) try
{
// Some types that I need
typedef BCRSMatrix<FieldMatrix<double, blocksize, blocksize> > MatrixType;
typedef BlockVector<FieldVector<double, blocksize> > VectorType;
// parse data file
ConfigParser parameterSet;
parameterSet.parseFile("staticrod.parset");
// read solver settings
const int maxLevel = parameterSet.get("maxLevel", int(0));
double loadIncrement = parameterSet.get("loadIncrement", double(0));
const int maxNewtonSteps = parameterSet.get("maxNewtonSteps", int(0));
const int numIt = parameterSet.get("numIt", int(0));
const int nu1 = parameterSet.get("nu1", int(0));
const int nu2 = parameterSet.get("nu2", int(0));
const int mu = parameterSet.get("mu", int(0));
const int baseIt = parameterSet.get("baseIt", int(0));
const double tolerance = parameterSet.get("tolerance", double(0));
const double baseTolerance = parameterSet.get("baseTolerance", double(0));
// Problem settings
const int numRodBaseElements = parameterSet.get("numRodBaseElements", int(0));
// ///////////////////////////////////////
// Create the two grids
// ///////////////////////////////////////
typedef OneDGrid<1,1> RodGridType;
RodGridType rod(numRodBaseElements, 0, 1);
// refine uniformly until maxLevel
for (int i=0; i<maxLevel; i++)
rod.globalRefine(1);
int maxlevel = rod.maxlevel();
int numRodElements = rod.size(maxlevel, 0);
Array<BitField> dirichletNodes;
dirichletNodes.resize(maxLevel+1);
for (int i=0; i<=maxlevel; i++) {
dirichletNodes[i].resize( blocksize * rod.size(i,1) );
for (int j=0; j<blocksize; j++) {
dirichletNodes[i][j] = true;
dirichletNodes[i][dirichletNodes[i].size()-1-j] = true;
}
}
// //////////////////////////////////////////////////////////
// Create discrete function spaces
// //////////////////////////////////////////////////////////
typedef FunctionSpace < double , double, 1, 1 > RodFuncSpace;
typedef LevelGridPart<RodGridType> RodGridPartType;
typedef LagrangeDiscreteFunctionSpace < RodFuncSpace, RodGridPartType, 1> RodFuncSpaceType;
Array<const RodFuncSpaceType*> rodFuncSpace(maxlevel+1);
for (int i=0; i<maxlevel+1; i++) {
rodGridPart[i] = new RodGridPartType(rod, i);
rodFuncSpace[i] = new RodFuncSpaceType(*rodGridPart[i]);
}
// ////////////////////////////////////////////////////////////
// Create solution and rhs vectors
// ////////////////////////////////////////////////////////////
VectorType rhs;
VectorType x;
VectorType corr;
MatrixType hessianMatrix;
RodAssembler<RodFuncSpaceType, 4> rodAssembler(*rodFuncSpace[maxlevel]);
rodAssembler.setParameters(1, 100, 100);
MatrixIndexSet indices(numRodElements+1, numRodElements+1);
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianMatrix);
rhs.resize(rodFuncSpace[maxlevel]->size());
x.resize(rodFuncSpace[maxlevel]->size());
corr.resize(rodFuncSpace[maxlevel]->size());
// Initial solution
x = 0;
for (int i=0; i<numRodElements+1; i++) {
x[i][0] = i/((double)numRodElements);
x[i][1] = 0;
x[i][2] = M_PI/2;
}
x[0][0] = x[numRodElements][0] = 0;
x[0][1] = x[numRodElements][1] = 0;
x[0][2] = 0;
x[numRodElements][2] = 2*M_PI;
// //////////////////////////////////////////////////////////
// Create obstacles
// //////////////////////////////////////////////////////////
Array<BitField> hasObstacle;
hasObstacle.resize(maxLevel+1);
for (int i=0; i<hasObstacle.size(); i++) {
hasObstacle[i].resize(rod.size(i, 1));
hasObstacle[i].setAll();
}
Array<SimpleVector<BoxConstraint<3> > > obstacles(maxlevel+1);
for (int i=0; i<obstacles.size(); i++)
obstacles[i].resize(rod.size(i,1));
for (int i=0; i<obstacles[maxlevel].size(); i++) {
obstacles[maxlevel][i].clear();
obstacles[maxlevel][i].val[1] = 0.1 - x[i][0];
}
// Create a solver
#if defined IPOPT
typedef LinearIPOptSolver<VectorType> SolverType;
SolverType solver;
solver.dirichletNodes_ = &totalDirichletNodes[maxlevel];
solver.hasObstacle_ = &contactAssembler.hasObstacle_[maxlevel];
solver.obstacles_ = &contactAssembler.obstacles_[maxlevel];
solver.verbosity_ = Solver::FULL;
#elif defined GAUSS_SEIDEL
typedef ProjectedBlockGSStep<MatrixType, VectorType> SmootherType;
SmootherType projectedBlockGSStep(hessianMatrix, corr, rhs);
projectedBlockGSStep.dirichletNodes_ = &dirichletNodes[maxlevel];
projectedBlockGSStep.hasObstacle_ = &hasObstacle[maxlevel];
projectedBlockGSStep.obstacles_ = &obstacles;
EnergyNorm<MatrixType, VectorType> energyNorm(projectedBlockGSStep);
IterativeSolver<MatrixType, VectorType> solver;
solver.iterationStep = &projectedBlockGSStep;
solver.numIt = numIt;
solver.errorNorm_ = &energyNorm;
solver.tolerance_ = tolerance;
#elif defined MULTIGRID
// First create a gauss-seidel base solver
ProjectedBlockGSStep<MatrixType, VectorType> baseSolverStep;
EnergyNorm<MatrixType, VectorType> baseEnergyNorm(baseSolverStep);
IterativeSolver<MatrixType, VectorType> baseSolver;
baseSolver.iterationStep = &baseSolverStep;
baseSolver.numIt = baseIt;
baseSolver.verbosity_ = Solver::QUIET;
baseSolver.errorNorm_ = &baseEnergyNorm;
baseSolver.tolerance_ = baseTolerance;
// Make pre and postsmoothers
ProjectedBlockGSStep<MatrixType, VectorType> presmoother;
ProjectedBlockGSStep<MatrixType, VectorType> postsmoother;
ContactMMGStep<MatrixType, VectorType, RodFuncSpaceType > contactMMGStep(maxlevel+1);
contactMMGStep.setMGType(mu, nu1, nu2);
contactMMGStep.dirichletNodes_ = &dirichletNodes;
contactMMGStep.basesolver_ = &baseSolver;
contactMMGStep.presmoother_ = &presmoother;
contactMMGStep.postsmoother_ = &postsmoother;
contactMMGStep.hasObstacle_ = &hasObstacle;
contactMMGStep.obstacles_ = &obstacles;
// Create the transfer operators
contactMMGStep.mgTransfer_.resize(maxlevel);
for (int i=0; i<contactMMGStep.mgTransfer_.size(); i++){
TruncatedMGTransfer<VectorType>* newTransferOp = new TruncatedMGTransfer<VectorType>;
newTransferOp->setup(*rodFuncSpace[i], *rodFuncSpace[i+1]);
contactMMGStep.mgTransfer_[i] = newTransferOp;
}
EnergyNorm<MatrixType, VectorType> energyNorm(contactMMGStep);
IterativeSolver<MatrixType, VectorType> solver;
solver.iterationStep = &contactMMGStep;
solver.numIt = numIt;
solver.errorNorm_ = &energyNorm;
solver.tolerance_ = tolerance;
#else
#warning You have to specify a solver!
#endif
// ///////////////////////////////////////////////////
// Do a homotopy of the Dirichlet boundary data
// ///////////////////////////////////////////////////
double loadFactor = 0;
do {
loadFactor += loadIncrement;
std::cout << "####################################################" << std::endl;
std::cout << "New load factor: " << loadFactor
<< " new load increment: " << loadIncrement << std::endl;
std::cout << "####################################################" << std::endl;
// The continuation variable determines the material parameters
double A1 = loadFactor * 1000;
double A3 = loadFactor * 1000;
rodAssembler.setParameters(1, A1, A3);
// /////////////////////////////////////////////////////
// Newton Solver
// /////////////////////////////////////////////////////
for (int j=0; j<maxNewtonSteps; j++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Newton Step Number: " << j << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
//std::cout <<"Solution: " << x << std::endl;
rodAssembler.assembleGradient(x, rhs);
rodAssembler.assembleMatrix(x, hessianMatrix);
rhs *= -1;
//std::cout << "rhs: " << std::endl << rhs << std::endl;
#ifndef IPOPT
solver.iterationStep->setProblem(hessianMatrix, corr, rhs);
#else
solver.setProblem(hessianMatrix, corr, rhs);
#endif
solver.preprocess();
#ifdef MULTIGRID
contactMMGStep.preprocess();
#endif
// /////////////////////////////
// Solve !
// /////////////////////////////
solver.solve();
#ifdef MULTIGRID
//std::cout << "Correction: \n" << corr << std::endl;
// line search
printf("------ Line Search ---------\n");
int lSSteps = 10;
double smallestEnergy = std::numeric_limits<double>::max();
double smallestFactor = 1;
for (int k=0; k<lSSteps; k++) {
double factor = double(k)/(lSSteps-1);
VectorType sCorr = corr;
sCorr *= factor;
sCorr += x;
double energy = rodAssembler.computeEnergy(sCorr);
if (energy < smallestEnergy) {
smallestEnergy = energy;
smallestFactor = factor;
}
printf("factor: %g, energy: %e\n", factor, energy);
}
std::cout << "Damping factor: " << smallestFactor << std::endl;
// Add correction to the current solution
x.axpy(smallestFactor, corr);
// Output result
//std::cout << "Solution:" << std::endl << x << std::endl;
printf("infinity norm of the correction: %g\n", smallestFactor*corr.infinity_norm());
if (smallestFactor*corr.infinity_norm() < 1e-8)
// Subtract correction from the current obstacle
for (int k=0; k<corr.size(); k++) {
FieldVector<double, blocksize> tmp = corr[k];
tmp *= smallestFactor;
obstacles[maxlevel][k] -= tmp;
}
// Write Lagrange multiplyers
std::stringstream a1AsAscii, a3AsAscii;
a1AsAscii << A1;
a3AsAscii << A3;
std::string lagrangeFilename = "pressure/lagrange_" + a1AsAscii.str() + "_" + a3AsAscii.str();
std::ofstream lagrangeFile(lagrangeFilename.c_str());
VectorType lagrangeMultipliers;
rodAssembler.assembleGradient(x, lagrangeMultipliers);
lagrangeFile << lagrangeMultipliers << std::endl;
// Write result grid
std::string solutionFilename = "solutions/rod_" + a1AsAscii.str()
+ "_" + a3AsAscii.str() + ".result";
writeRod(x, solutionFilename);
} catch (Exception e) {
std::cout << e << std::endl;
}