Skip to content
Snippets Groups Projects
unitvector.hh 19.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef UNIT_VECTOR_HH
    #define UNIT_VECTOR_HH
    
    #include <dune/common/fvector.hh>
    
    #include <dune/common/fmatrix.hh>
    
    #include <dune/common/version.hh>
    #include <dune/common/math.hh>
    
    #include <dune/gfe/tensor3.hh>
    
    #include <dune/gfe/symmetricmatrix.hh>
    
    template <class T, int N>
    class Rotation;
    
    
        \tparam N Dimension of the embedding space
    
        \tparam T The type used for individual coordinates
    
    template <class T, int N>
    
        // Rotation<T,3> is friend, because it needs the various derivatives of the arccos
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief Computes sin(x) / x without getting unstable for small x */
    
            using std::sin;
    
            return (x < 1e-2) ? 1.0-x*x/6.0+ Dune::power(x,4)/120.0-Dune::power(x,6)/5040.0+Dune::power(x,8)/362880.0 : sin(x)/x;
    
        /** \brief Compute arccos^2 without using the (at 1) nondifferentiable function acos x close to 1 */
        static T arcCosSquared(const T& x) {
    
            using std::acos;
    
            const T eps = 1e-2;
            if (x > 1-eps) {  // acos is not differentiable, use the series expansion instead,
    
                // we need here lots of terms to be sure that the numerical derivatives are also within maschine precision
    
                //return -2 * (x-1) + 1.0/3 * (x-1)*(x-1) - 4.0/45 * (x-1)*(x-1)*(x-1);
                return 11665028.0/4729725.0
                -141088.0/45045.0*x
                +   413.0/429.0*x*x
                -  5344.0/12285.0*Dune::power(x,3)
                +    245.0/1287.0*Dune::power(x,4)
                -  1632.0/25025.0*Dune::power(x,5)
                +     56.0/3861.0*Dune::power(x,6)
                -    32.0/21021.0*Dune::power(x,7);
    
                return Dune::power(acos(x),2);
    
        /** \brief Compute the derivative of arccos^2 without getting unstable for x close to 1 */
    
        static T derivativeOfArcCosSquared(const T& x) {
    
            using std::acos;
            using std::sqrt;
    
            const T eps = 1e-2;
    
            if (x > 1-eps) {  // regular expression is unstable, use the series expansion instead
    
                // we need here lots of terms to be sure that the numerical derivatives are also within maschine precision
    
                //return -2 + 2*(x-1)/3 - 4/15*(x-1)*(x-1);
                return -47104.0/15015.0
                +12614.0/6435.0*x
                -63488.0/45045.0*x*x
                + 1204.0/1287.0*Dune::power(x,3)
                - 2048.0/4095.0*Dune::power(x,4)
                +   112.0/585.0*Dune::power(x,5)
                -2048.0/45045.0*Dune::power(x,6)
                +   32.0/6435.0*Dune::power(x,7);
    
    
            } else if (x < -1+eps) {  // The function is not differentiable
    
                DUNE_THROW(Dune::Exception, "arccos^2 is not differentiable at x==-1!");
    
                return -2*acos(x) / sqrt(1-x*x);
    
        /** \brief Compute the second derivative of arccos^2 without getting unstable for x close to 1 */
    
        static T secondDerivativeOfArcCosSquared(const T& x) {
    
            using std::acos;
            using std::pow;
    
            const T eps = 1e-2;
    
            if (x > 1-eps) {  // regular expression is unstable, use the series expansion instead
    
                // we need here lots of terms to be sure that the numerical derivatives are also within maschine precision
    
                //return 2.0/3 - 8*(x-1)/15;
                return 1350030.0/676039.0+5632.0/2028117.0*Dune::power(x,10)
                -1039056896.0/334639305.0*x
                +150876.0/39767.0*x*x
                -445186048.0/111546435.0*Dune::power(x,3)
                +       343728.0/96577.0*Dune::power(x,4)
                -  57769984.0/22309287.0*Dune::power(x,5)
                +      710688.0/482885.0*Dune::power(x,6)
                -  41615360.0/66927861.0*Dune::power(x,7)
                +     616704.0/3380195.0*Dune::power(x,8)
                -     245760.0/7436429.0*Dune::power(x,9);
    
            } else if (x < -1+eps) {  // The function is not differentiable
                DUNE_THROW(Dune::Exception, "arccos^2 is not differentiable at x==-1!");
            } else
    
                return 2/(1-x*x) - 2*x*acos(x) / pow(1-x*x,1.5);
    
        /** \brief Compute the third derivative of arccos^2 without getting unstable for x close to 1 */
    
        static T thirdDerivativeOfArcCosSquared(const T& x) {
    
            using std::acos;
            using std::sqrt;
    
            const T eps = 1e-2;
    
            if (x > 1-eps) {  // regular expression is unstable, use the series expansion instead
    
                // we need here lots of terms to be sure that the numerical derivatives are also within maschine precision
    
                //return -8.0/15 + 24*(x-1)/35;
                return -1039056896.0/334639305.0
                +301752.0/39767.0*x
                -445186048.0/37182145.0*x*x
                +1374912.0/96577.0*Dune::power(x,3)
                -288849920.0/22309287.0*Dune::power(x,4)
                +4264128.0/482885.0*Dune::power(x,5)
                -41615360.0/9561123.0*Dune::power(x,6)
                +4933632.0/3380195.0*Dune::power(x,7)
                -2211840.0/7436429.0*Dune::power(x,8)
                +56320.0/2028117.0*Dune::power(x,9);
    
            } else if (x < -1+eps) {  // The function is not differentiable
    
                DUNE_THROW(Dune::Exception, "arccos^2 is not differentiable at x==-1!");
            } else {
    
                return 6*x/(d*d) - 6*x*x*acos(x)/(d*d*sqrt(d)) - 2*acos(x)/(d*sqrt(d));
    
        template <class T2, int N2>
        friend class UnitVector;
    
    
        /** \brief The type used for coordinates */
    
        typedef T field_type;
    
        /** \brief The type used for global coordinates */
    
        typedef Dune::FieldVector<T,N> CoordinateType;
    
        /** \brief Dimension of the manifold formed by unit vectors */
        static const int dim = N-1;
    
        /** \brief Dimension of the Euclidean space the manifold is embedded in */
        static const int embeddedDim = N;
    
    
        typedef Dune::FieldVector<T,N-1> TangentVector;
    
        typedef Dune::FieldVector<T,N> EmbeddedTangentVector;
    
        /** \brief The global convexity radius of the unit sphere */
    
        static constexpr double convexityRadius = 0.5*M_PI;
    
        /** \brief The return type of the derivativeOfProjection method */
        typedef Dune::FieldMatrix<T, N, N> DerivativeOfProjection;
    
    
        /** \brief Default constructor */
        UnitVector()
        {}
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief Constructor from a vector.  The vector gets normalized! */
    
        UnitVector(const Dune::FieldVector<T,N>& vector)
    
    Oliver Sander's avatar
    Oliver Sander committed
        {
            data_ /= data_.two_norm();
        }
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief Constructor from an array.  The array gets normalized! */
    
        UnitVector(const std::array<T,N>& vector)
    
                data_[i] = vector[i];
    
    Oliver Sander's avatar
    Oliver Sander committed
            data_ /= data_.two_norm();
    
        /** \brief Assignment from UnitVector with different type -- used for automatic differentiation with ADOL-C */
    
        template <class T2>
        UnitVector& operator <<= (const UnitVector<T2,N>& other) {
            for (int i=0; i<N; i++)
                data_[i] <<= other.data_[i];
            return *this;
        }
    
         /** \brief Rebind the UnitVector to another coordinate type */
        template<class U>
        struct rebind
        {
          typedef UnitVector<U,N> other;
        };
    
    
    
    
        UnitVector<T,N>& operator=(const Dune::FieldVector<T,N>& vector)
    
    Oliver Sander's avatar
    Oliver Sander committed
            data_ /= data_.two_norm();
    
         /** \brief The exponential map */
        static UnitVector exp(const UnitVector& p, const TangentVector& v) {
    
    
            Dune::FieldMatrix<T,N-1,N> frame = p.orthonormalFrame();
    
    Oliver Sander's avatar
    Oliver Sander committed
         /** \brief The exponential map */
    
        static UnitVector exp(const UnitVector& p, const EmbeddedTangentVector& v) {
    
            using std::abs;
            using std::cos;
            assert( abs(p.data_*v) < 1e-5 );
    
            UnitVector result = p;
    
            result.data_ *= cos(norm);
    
            result.data_.axpy(sinc(norm), v);
    
            return result;
        }
    
    
        /** \brief The inverse of the exponential map
         *
         * \results A vector in the tangent space of p
         */
    
        static EmbeddedTangentVector log(const UnitVector& p, const UnitVector& q)
        {
          EmbeddedTangentVector result = p.projectOntoTangentSpace(q.data_-p.data_);
          if (result.two_norm() > 1e-10)
            result *= distance(p,q) / result.two_norm();
          return result;
        }
    
    
        /** \brief Length of the great arc connecting the two points */
    
         static T distance(const UnitVector& a, const UnitVector& b) {
    
             using std::acos;
             using std::min;
    
    
             // Not nice: we are in a class for unit vectors, but the class is actually
             // supposed to handle perturbations of unit vectors as well.  Therefore
             // we normalize here.
    
             T x = a.data_ * b.data_/a.data_.two_norm()/b.data_.two_norm();
    
             // paranoia:  if the argument is just eps larger than 1 acos returns NaN
    
             x = min(x,1.0);
    
             return acos(x);
    
    #if ADOLC_ADOUBLE_H
        /** \brief Squared length of the great arc connecting the two points */
         static adouble distanceSquared(const UnitVector<double,N>& a, const UnitVector<adouble,N>& b)
         {
             // Not nice: we are in a class for unit vectors, but the class is actually
             // supposed to handle perturbations of unit vectors as well.  Therefore
             // we normalize here.
             adouble x = a.data_ * b.data_ / (a.data_.two_norm()*b.data_.two_norm());
    
             // paranoia:  if the argument is just eps larger than 1 acos returns NaN
    
             using std::min;
             x = min(x,1.0);
    
    
             // Special implementation that remains AD-differentiable near x==1
             return arcCosSquared(x);
        }
    #endif
    
    
        /** \brief Compute the gradient of the squared distance function keeping the first argument fixed
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
        static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const UnitVector& a, const UnitVector& b) {
    
            EmbeddedTangentVector result = a.data_;
    
            result *= derivativeOfArcCosSquared(x);
    
    
            // Project gradient onto the tangent plane at b in order to obtain the surface gradient
    
            result = b.projectOntoTangentSpace(result);
    
    
            // Gradient must be a tangent vector at b, in other words, orthogonal to it
    
            using std::abs;
            assert(abs(b.data_ * result) < 1e-5);
    
    
            return result;
        }
    
        /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Dune::SymmetricMatrix<T,N> secondDerivativeOfDistanceSquaredWRTSecondArgument(const UnitVector& p, const UnitVector& q) {
    
            Dune::FieldVector<T,N> pProjected = q.projectOntoTangentSpace(p.globalCoordinates());
    
                for (int j=0; j<=i; j++)
                    A(i,j) = pProjected[i]*pProjected[j];
    
            A *= secondDerivativeOfArcCosSquared(sp);
    
                for (int j=0; j<=i; j++)
                    Pq(i,j) = (i==j) - q.data_[i]*q.data_[j];
    
            A.axpy(-1*derivativeOfArcCosSquared(sp)*sp, Pq);
    
        /** \brief Compute the mixed second derivate \partial d^2 / \partial da db
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Dune::FieldMatrix<T,N,N> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const UnitVector& a, const UnitVector& b) {
    
            row[0] = b.projectOntoTangentSpace(a.globalCoordinates());
    
            Dune::FieldVector<T,N> tmp = a.projectOntoTangentSpace(b.globalCoordinates());
            Dune::FieldMatrix<T,N,1> column;
    
            for (int i=0; i<N; i++)  // turn row vector into column vector
    
            // A = row * column
            Dune::FMatrixHelp::multMatrix(column,row,A);
    
                for (int j=0; j<N; j++) {
                    Pp[i][j] = (i==j) - a.data_[i]*a.data_[j];
                    Pq[i][j] = (i==j) - b.data_[i]*b.data_[j];
                }
    
        /** \brief Compute the third derivative \partial d^3 / \partial dq^3
    
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Tensor3<T,N,N,N> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const UnitVector& p, const UnitVector& q) {
    
            // The projection matrix onto the tangent space at p and q
    
            for (int i=0; i<N; i++)
                for (int j=0; j<N; j++)
                    Pq[i][j] = (i==j) - q.globalCoordinates()[i]*q.globalCoordinates()[j];
    
            Dune::FieldVector<T,N> pProjected = q.projectOntoTangentSpace(p.globalCoordinates());
    
    
            for (int i=0; i<N; i++)
                for (int j=0; j<N; j++)
                    for (int k=0; k<N; k++) {
    
                        result[i][j][k] = thirdDerivativeOfArcCosSquared(sp) * pProjected[i] * pProjected[j] * pProjected[k]
                                        - secondDerivativeOfArcCosSquared(sp) * ((i==j)*sp + p.globalCoordinates()[i]*q.globalCoordinates()[j])*pProjected[k]
                                        - secondDerivativeOfArcCosSquared(sp) * ((i==k)*sp + p.globalCoordinates()[i]*q.globalCoordinates()[k])*pProjected[j]
                                        - secondDerivativeOfArcCosSquared(sp) * pProjected[i] * Pq[j][k] * sp
                                        + derivativeOfArcCosSquared(sp) * ((i==j)*q.globalCoordinates()[k] + (i==k)*q.globalCoordinates()[j]) * sp
                                        - derivativeOfArcCosSquared(sp) * p.globalCoordinates()[i] * Pq[j][k];
                    }
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2
    
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Tensor3<T,N,N,N> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const UnitVector& p, const UnitVector& q) {
    
            // The projection matrix onto the tangent space at p and q
    
                for (int j=0; j<N; j++) {
                    Pp[i][j] = (i==j) - p.globalCoordinates()[i]*p.globalCoordinates()[j];
                    Pq[i][j] = (i==j) - q.globalCoordinates()[i]*q.globalCoordinates()[j];
                }
    
            Dune::FieldVector<T,N> pProjected = q.projectOntoTangentSpace(p.globalCoordinates());
            Dune::FieldVector<T,N> qProjected = p.projectOntoTangentSpace(q.globalCoordinates());
    
            Tensor3<T,N,N,N> derivativeOfPqOTimesPq;
    
            for (int i=0; i<N; i++)
                for (int j=0; j<N; j++)
                    for (int k=0; k<N; k++) {
                        derivativeOfPqOTimesPq[i][j][k] = 0;
                        for (int l=0; l<N; l++)
                            derivativeOfPqOTimesPq[i][j][k] += Pp[i][l] * (Pq[j][l]*pProjected[k] + pProjected[j]*Pq[k][l]);
                    }
    
            result = thirdDerivativeOfArcCosSquared(sp)         * Tensor3<T,N,N,N>::product(qProjected,pProjected,pProjected)
    
                     + secondDerivativeOfArcCosSquared(sp)      * derivativeOfPqOTimesPq
    
                     - secondDerivativeOfArcCosSquared(sp) * sp * Tensor3<T,N,N,N>::product(qProjected,Pq)
                     - derivativeOfArcCosSquared(sp)            * Tensor3<T,N,N,N>::product(qProjected,Pq);
    
        /** \brief Project tangent vector of R^n onto the tangent space */
        EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const {
            EmbeddedTangentVector result = v;
            result.axpy(-1*(data_*result), data_);
            return result;
        }
    
    
        /** \brief Project tangent vector of R^n onto the normal space space */
        EmbeddedTangentVector projectOntoNormalSpace(const EmbeddedTangentVector& v) const {
    
            EmbeddedTangentVector result;
    
            T sp = 0;
            for (int i=0; i<N; i++)
              sp += v[i] * data_[i];
    
            for (int i=0; i<N; i++)
              result[i] = sp * data_[i];
    
            return result;
        }
    
        /** \brief The Weingarten map */
        EmbeddedTangentVector weingarten(const EmbeddedTangentVector& z, const EmbeddedTangentVector& v) const {
    
            EmbeddedTangentVector result;
    
            T sp = 0;
            for (int i=0; i<N; i++)
              sp += v[i] * data_[i];
    
            for (int i=0; i<N; i++)
              result[i] = -sp * z[i];
    
            return result;
        }
    
    
        static UnitVector<T,N> projectOnto(const CoordinateType& p)
        {
          UnitVector<T,N> result(p);
          result.data_ /= result.data_.two_norm();
          return result;
        }
    
    
        static DerivativeOfProjection derivativeOfProjection(const Dune::FieldVector<T,N>& p)
    
          auto normSquared = p.two_norm2();
          auto norm = std::sqrt(normSquared);
    
    
          Dune::FieldMatrix<T,N,N> result;
          for (int i=0; i<N; i++)
            for (int j=0; j<N; j++)
    
              result[i][j] = ( (i==j) - p[i]*p[j] / normSquared ) / norm;
    
        /** \brief The global coordinates, if you really want them */
    
        const CoordinateType& globalCoordinates() const {
    
        /** \brief Compute an orthonormal basis of the tangent space of S^n.
    
        This basis is of course not globally continuous.
        */
    
        Dune::FieldMatrix<T,N-1,N> orthonormalFrame() const {
    
    
            // Coordinates of the stereographic projection
    
                // Stereographic projection from the north pole onto R^{N-1}
                for (size_t i=0; i<N-1; i++)
                    X[i] = data_[i] / (1-data_[N-1]);
    
                // Stereographic projection from the south pole onto R^{N-1}
                for (size_t i=0; i<N-1; i++)
                    X[i] = data_[i] / (1+data_[N-1]);
    
            for (size_t i=0; i<N-1; i++)
                for (size_t j=0; j<N-1; j++)
                    // Note: the matrix is the transpose of the one in the paper
                    result[j][i] = 2*(i==j)*(1+RSquared) - 4*X[i]*X[j];
    
            for (size_t j=0; j<N-1; j++)
                result[j][N-1] = 4*X[j];
    
            // Upper hemisphere: adapt formulas so it is the stereographic projection from the south pole
    
            if (data_[N-1] > 0)
    
                for (size_t j=0; j<N-1; j++)
                    result[j][N-1] *= -1;
    
            // normalize the rows to make the orthogonal basis orthonormal
            for (size_t i=0; i<N-1; i++)
                result[i] /= result[i].two_norm();
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief Write unit vector object to output stream */
    
        friend std::ostream& operator<< (std::ostream& s, const UnitVector& unitVector)
        {
            return s << unitVector.data_;
        }