Newer
Older

Sander, Oliver
committed
#ifdef MULTIPRECISION
#include <boost/multiprecision/mpfr.hpp>
#endif
typedef boost::multiprecision::mpfr_float_50 FDType;
#else
typedef double FDType;
#endif
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers
#include <adolc/taping.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/fmatrix.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/istl/io.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/gfe/assemblers/localgeodesicfestiffness.hh>
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/assemblers/cosseratenergystiffness.hh>
#include <dune/gfe/assemblers/localgeodesicfeadolcstiffness.hh>
#include <dune/gfe/assemblers/localgeodesicfefdstiffness.hh>
#include <dune/gfe/spaces/productmanifold.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/spaces/rotation.hh>
using namespace Dune;
// grid dimension
const int dim = 2;
// Image space of the geodesic fe functions
using TargetSpace = GFE::ProductManifold<RealTuple<double,3>,Rotation<double,3> >;
/** \brief Assembles energy gradient and Hessian with ADOL-C
*/
template<class Basis>
// grid types
typedef typename Basis::GridView GridView;
typedef typename GridView::ctype DT;
typedef typename TargetSpace::ctype RT;
typedef typename GridView::template Codim<0>::Entity Entity;
typedef typename TargetSpace::template rebind<adouble>::other ATargetSpace;
// some other sizes
constexpr static int gridDim = GridView::dimension;
//! Dimension of the embedding space
constexpr static int embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
LocalADOLCStiffness(const GFE::LocalEnergy<Basis, ATargetSpace>* energy)
/** \brief Compute the energy at the current configuration */
virtual RT energy (const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution) const;
/** \brief Assemble the local stiffness matrix at the current position
This uses the automatic differentiation toolbox ADOL_C.
*/
virtual void assembleGradientAndHessian(const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double, embeddedBlocksize> >& localGradient,
Dune::Matrix<Dune::FieldMatrix<RT,embeddedBlocksize,embeddedBlocksize> >& localHessian,
bool vectorMode);
const GFE::LocalEnergy<Basis, ATargetSpace>* localEnergy_;
template <class Basis>
typename LocalADOLCStiffness<Basis>::RT
LocalADOLCStiffness<Basis>::
energy(const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution) const
{
double pureEnergy;
std::vector<ATargetSpace> localASolution(localSolution.size());
trace_on(1);
adouble energy = 0;
// The following loop is not quite intuitive: we copy the localSolution into an
// array of FieldVector<double>, go from there to FieldVector<adouble> and
// only then to ATargetSpace.
// Rationale: The constructor/assignment-from-vector of TargetSpace frequently
// contains a projection onto the manifold from the surrounding Euclidean space.
// ADOL-C needs a function on the whole Euclidean space, hence that projection
// is part of the function and needs to be taped.
// The following variable cannot be declared inside of the loop, or ADOL-C will report wrong results
// (Presumably because several independent variables use the same memory location.)
std::vector<typename ATargetSpace::CoordinateType> aRaw(localSolution.size());
for (size_t i=0; i<localSolution.size(); i++) {
typename TargetSpace::CoordinateType raw = localSolution[i].globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw[i][j] <<= raw[j];
localASolution[i] = aRaw[i]; // may contain a projection onto M -- needs to be done in adouble
}
energy = localEnergy_->energy(localView,localASolution);
energy >>= pureEnergy;
trace_off();
return pureEnergy;
// ///////////////////////////////////////////////////////////
// Compute gradient and Hessian together
// To compute the Hessian we need to compute the gradient anyway, so we may
// as well return it. This saves assembly time.
// ///////////////////////////////////////////////////////////
template <class Basis>
void LocalADOLCStiffness<Basis>::
assembleGradientAndHessian(const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double,embeddedBlocksize> >& localGradient,
Dune::Matrix<Dune::FieldMatrix<RT,embeddedBlocksize,embeddedBlocksize> >& localHessian,
bool vectorMode)
// Tape energy computation. We may not have to do this every time, but it's comparatively cheap.
energy(localView, localSolution);
/////////////////////////////////////////////////////////////////
// Compute the gradient.
/////////////////////////////////////////////////////////////////
// Copy data from Dune data structures to plain-C ones
size_t nDofs = localSolution.size();
size_t nDoubles = nDofs*embeddedBlocksize;
std::vector<double> xp(nDoubles);
int idx=0;
for (size_t i=0; i<nDofs; i++)
for (size_t j=0; j<embeddedBlocksize; j++)
xp[idx++] = localSolution[i].globalCoordinates()[j];
std::vector<double> g(nDoubles);
gradient(1,nDoubles,xp.data(),g.data()); // gradient evaluation
// Copy into Dune type
std::vector<typename TargetSpace::EmbeddedTangentVector> localEmbeddedGradient(localSolution.size());
idx=0;
for (size_t i=0; i<nDofs; i++)
for (size_t j=0; j<embeddedBlocksize; j++)
localGradient[i][j] = g[idx++];
/////////////////////////////////////////////////////////////////
// Compute Hessian
/////////////////////////////////////////////////////////////////
localHessian.setSize(nDofs,nDofs);
double* rawHessian[nDoubles];
for(size_t i=0; i<nDoubles; i++)
rawHessian[i] = (double*)malloc((i+1)*sizeof(double));
if (vectorMode)
hessian2(1,nDoubles,xp.data(),rawHessian);
else
hessian(1,nDoubles,xp.data(),rawHessian);
// Copy Hessian into Dune data type
for(size_t i=0; i<nDoubles; i++)
for (size_t j=0; j<nDoubles; j++)
{
double value = (i>=j) ? rawHessian[i][j] : rawHessian[j][i];
localHessian[j/embeddedBlocksize][i/embeddedBlocksize][j%embeddedBlocksize][i%embeddedBlocksize] = value;
}
for(size_t i=0; i<nDoubles; i++)
free(rawHessian[i]);

Oliver Sander
committed
/** \brief Assembles energy gradient and Hessian with finite differences
template<class Basis, class field_type=double>
// grid types
typedef typename Basis::GridView GridView;
typedef typename GridView::Grid::ctype DT;
typedef typename GridView::template Codim<0>::Entity Entity;
typedef typename TargetSpace::template rebind<field_type>::other ATargetSpace;
//! Dimension of a tangent space
constexpr static int blocksize = TargetSpace::TangentVector::dimension;
//! Dimension of the embedding space
constexpr static int embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
LocalFDStiffness(const GFE::LocalEnergy<Basis, ATargetSpace>* energy)
virtual void assembleGradientAndHessian(const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double,embeddedBlocksize> >& localGradient,
Dune::Matrix<Dune::FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> >& localHessian);
const GFE::LocalEnergy<Basis, ATargetSpace>* localEnergy_;
};
// ///////////////////////////////////////////////////////////
// Compute gradient by finite-difference approximation
// ///////////////////////////////////////////////////////////
template <class Basis, class field_type>
void LocalFDStiffness<Basis, field_type>::
assembleGradientAndHessian(const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double, embeddedBlocksize> >& localGradient,
Dune::Matrix<Dune::FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> >& localHessian)
// Number of degrees of freedom for this element
size_t nDofs = localSolution.size();
// Clear assemble data
localHessian.setSize(nDofs, nDofs);
localHessian = 0;
const field_type eps = 1e-10;
const field_type eps = 1e-4;
std::vector<ATargetSpace> localASolution(localSolution.size());
std::vector<typename ATargetSpace::CoordinateType> aRaw(localSolution.size());
for (size_t i=0; i<localSolution.size(); i++) {
typename TargetSpace::CoordinateType raw = localSolution[i].globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw[i][j] = raw[j];
localASolution[i] = aRaw[i]; // may contain a projection onto M -- needs to be done in adouble
}
std::vector<Dune::FieldMatrix<field_type,embeddedBlocksize,embeddedBlocksize> > B(localSolution.size());
for (size_t i=0; i<B.size(); i++)
{
B[i] = 0;
for (int j=0; j<embeddedBlocksize; j++)
B[i][j][j] = 1.0;
}
// Precompute negative energy at the current configuration
// (negative because that is how we need it as part of the 2nd-order fd formula)
field_type centerValue = -localEnergy_->energy(localView, localASolution);
// Precompute energy infinitesimal corrections in the directions of the local basis vectors
std::vector<std::array<field_type,embeddedBlocksize> > forwardEnergy(nDofs);
std::vector<std::array<field_type,embeddedBlocksize> > backwardEnergy(nDofs);
for (size_t i=0; i<localSolution.size(); i++) {
for (size_t i2=0; i2<embeddedBlocksize; i2++) {
typename ATargetSpace::EmbeddedTangentVector epsXi = B[i][i2];
epsXi *= eps;
typename ATargetSpace::EmbeddedTangentVector minusEpsXi = epsXi;
minusEpsXi *= -1;
std::vector<ATargetSpace> forwardSolution = localASolution;
std::vector<ATargetSpace> backwardSolution = localASolution;
forwardSolution[i] = ATargetSpace(localASolution[i].globalCoordinates() + epsXi);
backwardSolution[i] = ATargetSpace(localASolution[i].globalCoordinates() + minusEpsXi);
forwardEnergy[i][i2] = localEnergy_->energy(localView, forwardSolution);
backwardEnergy[i][i2] = localEnergy_->energy(localView, backwardSolution);
//////////////////////////////////////////////////////////////
// Compute gradient by finite-difference approximation
//////////////////////////////////////////////////////////////
localGradient.resize(localSolution.size());
for (size_t i=0; i<localSolution.size(); i++)
for (int j=0; j<embeddedBlocksize; j++)
{
field_type foo = (forwardEnergy[i][j] - backwardEnergy[i][j]) / (2*eps);
localGradient[i][j] = foo.template convert_to<double>();
localGradient[i][j] = foo;
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
///////////////////////////////////////////////////////////////////////////
// Compute Riemannian Hesse matrix by finite-difference approximation.
// We loop over the lower left triangular half of the matrix.
// The other half follows from symmetry.
///////////////////////////////////////////////////////////////////////////
//#pragma omp parallel for schedule (dynamic)
for (size_t i=0; i<localSolution.size(); i++) {
for (size_t i2=0; i2<embeddedBlocksize; i2++) {
for (size_t j=0; j<=i; j++) {
for (size_t j2=0; j2<((i==j) ? i2+1 : embeddedBlocksize); j2++) {
std::vector<ATargetSpace> forwardSolutionXiEta = localASolution;
std::vector<ATargetSpace> backwardSolutionXiEta = localASolution;
typename ATargetSpace::EmbeddedTangentVector epsXi = B[i][i2]; epsXi *= eps;
typename ATargetSpace::EmbeddedTangentVector epsEta = B[j][j2]; epsEta *= eps;
typename ATargetSpace::EmbeddedTangentVector minusEpsXi = epsXi; minusEpsXi *= -1;
typename ATargetSpace::EmbeddedTangentVector minusEpsEta = epsEta; minusEpsEta *= -1;
if (i==j)
forwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + epsXi+epsEta);
else {
forwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + epsXi);
forwardSolutionXiEta[j] = ATargetSpace(localASolution[j].globalCoordinates() + epsEta);
}
if (i==j)
backwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + minusEpsXi+minusEpsEta);
else {
backwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + minusEpsXi);
backwardSolutionXiEta[j] = ATargetSpace(localASolution[j].globalCoordinates() + minusEpsEta);
}
field_type forwardValue = localEnergy_->energy(localView, forwardSolutionXiEta) - forwardEnergy[i][i2] - forwardEnergy[j][j2];
field_type backwardValue = localEnergy_->energy(localView, backwardSolutionXiEta) - backwardEnergy[i][i2] - backwardEnergy[j][j2];
field_type foo = 0.5 * (forwardValue - 2*centerValue + backwardValue) / (eps*eps);
localHessian[i][j][i2][j2] = localHessian[j][i][j2][i2] = foo.template convert_to<double>();
localHessian[i][j][i2][j2] = localHessian[j][i][j2][i2] = foo;
template <int N>
void compareMatrices(const Matrix<FieldMatrix<double,N,N> >& matrixA, std::string nameA,
const Matrix<FieldMatrix<double,N,N> >& matrixB, std::string nameB)
{
double maxAbsDifference = -1;
double maxRelDifference = -1;
for(size_t i=0; i<matrixA.N(); i++) {
for (size_t j=0; j<matrixA.M(); j++ ) {
for (size_t ii=0; ii<matrixA[i][j].N(); ii++)
for (size_t jj=0; jj<matrixA[i][j].M(); jj++)
{
double valueA = matrixA[i][j][ii][jj];
double valueB = matrixB[i][j][ii][jj];
double absDifference = valueA - valueB;
double relDifference = std::abs(absDifference) / std::abs(valueA);
maxAbsDifference = std::max(maxAbsDifference, std::abs(absDifference));
maxRelDifference = std::max(maxRelDifference, relDifference);
if (relDifference > 1)
std::cout << i << ", " << j << " " << ii << ", " << jj
<< ", " << nameA << ": " << valueA << ", " << nameB << ": " << valueB << std::endl;
}
std::cout << nameA << " vs. " << nameB << " -- max absolute / relative difference is " << maxAbsDifference << " / " << maxRelDifference << std::endl;
int main (int argc, char *argv[]) try
MPIHelper::instance(argc, argv);
typedef std::vector<TargetSpace> SolutionType;
constexpr static int embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
constexpr static int blocksize = TargetSpace::TangentVector::dimension;
// ///////////////////////////////////////
// Create the grid
// ///////////////////////////////////////
typedef YaspGrid<dim> GridType;
FieldVector<double,dim> upper = {{0.38, 0.128}};
std::array<int,dim> elements = {{5, 5}};
GridType grid(upper, elements);
typedef GridType::LeafGridView GridView;
GridView gridView = grid.leafGridView();
typedef Functions::LagrangeBasis<GridView,1> FEBasis;
FEBasis feBasis(gridView);
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
// //////////////////////////
// Initial iterate
// //////////////////////////
SolutionType x(feBasis.size());
//////////////////////////////////////////7
// Read initial iterate from file
//////////////////////////////////////////7
Dune::BlockVector<FieldVector<double,7> > xEmbedded(x.size());
std::ifstream file("dangerous_iterate", std::ios::in|std::ios::binary);
if (not (file))
DUNE_THROW(SolverError, "Couldn't open file 'dangerous_iterate' for reading");
GenericVector::readBinary(file, xEmbedded);
for (int ii=0; ii<x.size(); ii++)
x[ii] = xEmbedded[ii];
auto identity = [](const FieldVector<double,2>& x) -> FieldVector<double,3> {
return {x[0], x[1], 0};
};
std::vector<FieldVector<double,3> > v;
using namespace Functions::BasisFactory;
auto powerBasis = makeBasis(
gridView,
power<3>(
lagrange<1>(),
blockedInterleaved()
Functions::interpolate(powerBasis, v, identity);
for (size_t i=0; i<x.size(); i++)
// ////////////////////////////////////////////////////////////
// Create an assembler for the energy functional
// ////////////////////////////////////////////////////////////
ParameterTree materialParameters;
materialParameters["thickness"] = "1";
materialParameters["mu"] = "1";
materialParameters["lambda"] = "1";
materialParameters["mu_c"] = "1";
materialParameters["L_c"] = "1";
materialParameters["q"] = "2";
materialParameters["kappa"] = "1";
materialParameters["b1"] = "1";
materialParameters["b2"] = "1";
materialParameters["b3"] = "1";
///////////////////////////////////////////////////////////////////////
// Assemblers for the Euclidean derivatives in an embedding space
///////////////////////////////////////////////////////////////////////
// Assembler using ADOL-C
CosseratEnergyLocalStiffness<FEBasis,
3,adouble> cosseratEnergyADOLCLocalStiffness(materialParameters, nullptr, nullptr, nullptr);
LocalADOLCStiffness<FEBasis> localADOLCStiffness(&cosseratEnergyADOLCLocalStiffness);
CosseratEnergyLocalStiffness<FEBasis,
3,FDType> cosseratEnergyFDLocalStiffness(materialParameters, nullptr, nullptr, nullptr);
LocalFDStiffness<FEBasis,FDType> localFDStiffness(&cosseratEnergyFDLocalStiffness);
///////////////////////////////////////////////////////////////////////
// Assemblers for the Riemannian derivatives without embedding space
///////////////////////////////////////////////////////////////////////
// Assembler using ADOL-C
LocalGeodesicFEADOLCStiffness<FEBasis,
TargetSpace> localGFEADOLCStiffness(&cosseratEnergyADOLCLocalStiffness);
LocalGeodesicFEFDStiffness<FEBasis,
TargetSpace,
FDType> localGFEFDStiffness(&cosseratEnergyFDLocalStiffness);
// Compute and compare matrices
for (const auto& element : Dune::elements(gridView))
{
std::cout << " ++++ element " << gridView.indexSet().index(element) << " ++++" << std::endl;
auto localView = feBasis.localView();
localView.bind(element);
const int numOfBaseFct = localView.size();
// Extract local configuration
std::vector<TargetSpace> localSolution(numOfBaseFct);
for (int i=0; i<numOfBaseFct; i++)
localSolution[i] = x[localView.index(i)];
std::vector<Dune::FieldVector<double,embeddedBlocksize> > localADGradient(numOfBaseFct);
std::vector<Dune::FieldVector<double,embeddedBlocksize> > localADVMGradient(numOfBaseFct); // VM: vector-mode
std::vector<Dune::FieldVector<double,embeddedBlocksize> > localFDGradient(numOfBaseFct);
Matrix<FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> > localADHessian;
Matrix<FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> > localADVMHessian; // VM: vector-mode
Matrix<FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> > localFDHessian;
// Assemble Euclidean derivatives
localADOLCStiffness.assembleGradientAndHessian(localView,
localSolution,
localADGradient,
localADHessian,
false); // 'true' means 'vector mode'
localADOLCStiffness.assembleGradientAndHessian(localView,
localSolution,
localADGradient,
localADVMHessian,
true); // 'true' means 'vector mode'
localFDStiffness.assembleGradientAndHessian(localView,
localSolution,
localFDGradient,
localFDHessian);
// compare
compareMatrices(localADHessian, "AD", localFDHessian, "FD");
compareMatrices(localADHessian, "AD scalar", localADVMHessian, "AD vector");
// Assemble Riemannian derivatives
std::vector<double> localRiemannianADGradient(numOfBaseFct*blocksize);
std::vector<double> localRiemannianFDGradient(numOfBaseFct*blocksize);
Matrix<FieldMatrix<double,blocksize,blocksize> > localRiemannianADHessian;
Matrix<FieldMatrix<double,blocksize,blocksize> > localRiemannianFDHessian;
localGFEADOLCStiffness.assembleGradientAndHessian(localView,
localSolution,
localRiemannianADGradient,
localRiemannianADHessian);
localGFEFDStiffness.assembleGradientAndHessian(localView,
localSolution,
localRiemannianFDGradient,
localRiemannianFDHessian);
compareMatrices(localRiemannianADHessian, "Riemannian AD", localRiemannianFDHessian, "Riemannian FD");
// //////////////////////////////
}
catch (Exception& e) {
std::cout << e.what() << std::endl;