Newer
Older
#ifndef DUNE_GFE_FUNCTIONS_INTERPOLATIONDERIVATIVES_HH
#define DUNE_GFE_FUNCTIONS_INTERPOLATIONDERIVATIVES_HH
// Includes for the ADOL-C automatic differentiation library
#include <adolc/adolc.h>
#include <dune/matrix-vector/transpose.hh>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/gfe/functions/localgeodesicfefunction.hh>
#include <dune/gfe/functions/localprojectedfefunction.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/spaces/unitvector.hh>
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
namespace Dune::GFE
{
/** \brief Compute derivatives of GFE interpolation with respect to the coefficients
*
* \tparam LocalInterpolationRule The class that implements the interpolation from a set of coefficients
*
*/
template <typename LocalInterpolationRule>
class InterpolationDerivatives
{
using TargetSpace = typename LocalInterpolationRule::TargetSpace;
constexpr static auto blocksize = TargetSpace::TangentVector::dimension;
constexpr static auto embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
//////////////////////////////////////////////////////////////////////
// Data members
//////////////////////////////////////////////////////////////////////
const LocalInterpolationRule& localInterpolationRule_;
// Whether derivatives of the interpolation value are to be computed
const bool doValue_;
// Whether derivatives of the derivative of the interpolation
// with respect to space are to be computed
const bool doDerivative_;
// TODO: Don't hardcode FieldMatrix
std::vector<FieldMatrix<double,blocksize,embeddedBlocksize> > orthonormalFrames_;
// The coefficient values where we are evaluating the derivatives.
// In flattened format, because ADOL-C can accept only that.
std::vector<double> localConfigurationFlat_;
// The tangent vectors
double*** Xppp_;
// Results of hov_wk_forward
double* y_; // Function values
double*** Yppp_; // First derivatives
double*** Zppp_; // result of Up x H x XPPP
double** Upp_; // Vector on left-hand side
size_t numberOfTangents() const
{
return blocksize * localInterpolationRule_.size();
}
/** \brief Expose a two-index window from a three-index object
*
* \tparam rows Number of rows of the window
* \tparam cols Number of cols of the window
* \tparam thirdIndex The value of the third index
*/
template <size_t rows, size_t cols, size_t thirdIndex>
class SubmatrixView
{
public:
SubmatrixView(double*** data, size_t blockRow, size_t blockCol)
: data_(data), blockRow_(blockRow), blockCol_(blockCol)
{}
/** \brief Access to scalar entries */
double& operator()(size_t row, size_t col)
{
return data_[blockRow_*rows+row][blockCol_*cols+col][thirdIndex];
}
/** \brief Const access to scalar entries */
const double& operator()(size_t row, size_t col) const
{
return data_[blockRow_*rows+row][blockCol_*cols+col][thirdIndex];
}
/** \brief Assignment from a transposed matrix */
void transposedAssign(FieldMatrix<double,cols,rows> other)
{
for (size_t i=0; i<rows; ++i)
for (size_t j=0; j<cols; ++j)
(*this)(i,j) = other[j][i];
}
/** \brief Matrix multiplication from the right with a transposed matrix
*/
FieldMatrix<double,rows,rows> multiplyTransposed(const FieldMatrix<double,rows,cols>& other)
{
FieldMatrix<double,rows,rows> result;
for (size_t i=0; i<rows; ++i)
for (size_t j=0; j<rows; ++j)
{
result[i][j] = 0;
for (size_t k=0; k<cols; ++k)
result[i][j] += (*this)(i,k) * other[j][k];
}
return result;
}
private:
double*** data_;
const size_t blockRow_;
const size_t blockCol_;
};
public:
InterpolationDerivatives(const LocalInterpolationRule& localInterpolationRule,
bool doValue,
bool doDerivative)
: localInterpolationRule_(localInterpolationRule)
, doValue_(doValue)
, doDerivative_(doDerivative)
{
// Precompute the orthonormal frames
orthonormalFrames_.resize(localInterpolationRule_.size());
for (size_t i=0; i<localInterpolationRule_.size(); ++i)
orthonormalFrames_[i] = localInterpolationRule_.coefficient(i).orthonormalFrame();
// Construct vector containing the configuration
localConfigurationFlat_.resize(localInterpolationRule_.size()*embeddedBlocksize);
for (size_t i=0; i<localInterpolationRule_.size(); i++)
for (size_t j=0; j<embeddedBlocksize; j++)
localConfigurationFlat_[i*embeddedBlocksize+j] = localInterpolationRule_.coefficient(i).globalCoordinates()[j];
// Various arrays for ADOL-C
const int d = 1; // TODO: What is this? (ADOL-C calls this "highest derivative degree")
// Number of dependent variables of GFE interpolation
const size_t m = embeddedBlocksize + LocalInterpolationRule::DerivativeType::rows * LocalInterpolationRule::DerivativeType::cols;
// Number of independent variables of GFE interpolation
const size_t n = localInterpolationRule_.size() * embeddedBlocksize;
// Set up the tangent vectors for ADOL-C
// They are given by tangent vectors of TargetSpace.
Xppp_ = myalloc3(n,numberOfTangents(),1); // The tangent vectors
for (size_t i=0; i<n; i++)
for (size_t j=0; j<numberOfTangents(); j++)
Xppp_[i][j][0] = 0;
for (size_t i=0; i<orthonormalFrames_.size(); ++i)
{
SubmatrixView<embeddedBlocksize,blocksize,0> view(Xppp_,i,i);
view.transposedAssign(orthonormalFrames_[i]);
}
// Results of hov_wk_forward
y_ = myalloc1(m); // Function values
Yppp_ = myalloc3(m,numberOfTangents(),1); // First derivatives
Zppp_ = myalloc3(numberOfTangents(),n,d+1); /* result of Up x H x XPPP */
Upp_ = myalloc2(m,d+1); /* vector on left-hand side */
}
~InterpolationDerivatives()
{
// Free allocated memory again
myfree3(Yppp_);
myfree1(y_);
myfree3(Xppp_);
myfree2(Upp_);
myfree3(Zppp_);
}
/** \brief Bind the objects to a particular evaluation point
*
* In particular, this computes the value of the interpolation function at that point,
* and the derivative at that point with respect to space. The default implementation
* uses ADOL-C to tape these evaluations. That is required for the evaluateDerivatives
* method below to be able to compute the derivatives with respect to the coefficients.
*
* \param[in] tapeNumber Number of the ADOL-C tape to be used
* \param[in] localPos Local position where the FE function is evaluated
* \param[out] value The function value at the local configuration
* \param[out] derivative The derivative of the interpolation function
* with respect to the evaluation point
*/
template <typename Element>
void bind(short tapeNumber,
const Element& element,
const typename Element::Geometry::LocalCoordinate& localPos,
typename TargetSpace::CoordinateType& valueGlobalCoordinates,
typename LocalInterpolationRule::DerivativeType& derivative)
{
using ATargetSpace = typename TargetSpace::template rebind<adouble>::other;
using ALocalInterpolationRule = typename LocalInterpolationRule::template rebind<ATargetSpace>::other;
const auto geometryJacobianInverse = element.geometry().jacobianInverse(localPos);
////////////////////////////////////////////////////////////////////////////////////////
// Tape the FE interpolation and its derivative with respect to the evaluation point.
////////////////////////////////////////////////////////////////////////////////////////
trace_on(tapeNumber);
std::vector<ATargetSpace> localAConfiguration(localInterpolationRule_.size());
std::vector<typename ATargetSpace::CoordinateType> aRaw(localInterpolationRule_.size());
for (size_t i=0; i<localInterpolationRule_.size(); i++) {
typename TargetSpace::CoordinateType raw = localInterpolationRule_.coefficient(i).globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw[i][j] <<= raw[j];
localAConfiguration[i] = aRaw[i]; // may contain a projection onto M -- needs to be done in adouble
}
// Create the functions, we want to tape the function evaluation and the evaluation of the derivatives
const auto& scalarFiniteElement = localInterpolationRule_.localFiniteElement();
ALocalInterpolationRule localGFEFunction(scalarFiniteElement,localAConfiguration);
if (doValue_)
{
if (doDerivative_)
{
// Evaluate the function and its derivative with respect to space
auto [aValue, aReferenceDerivative] = localGFEFunction.evaluateValueAndDerivative(localPos);
//... and transfer the function values to global coordinates
auto aValueGlobalCoordinates = aValue.globalCoordinates();
// Tell ADOL-C that the value coordinates are dependent variables
for (size_t i = 0; i<valueGlobalCoordinates.size(); i++)
aValueGlobalCoordinates[i] >>= valueGlobalCoordinates[i];
// Evaluate the derivative of the function defined on the actual element - these are in global coordinates already
auto aDerivative = aReferenceDerivative * geometryJacobianInverse;
for (size_t i = 0; i<derivative.rows; i++)
for (size_t j = 0; j<derivative.cols; j++)
aDerivative[i][j] >>= derivative[i][j];
}
else
{
// Evaluate the function
auto aValue = localGFEFunction.evaluate(localPos);
//... and transfer the function values to global coordinates
auto aValueGlobalCoordinates = aValue.globalCoordinates();
// Tell ADOL-C that the value coordinates are dependent variables
for (size_t i = 0; i<valueGlobalCoordinates.size(); i++)
aValueGlobalCoordinates[i] >>= valueGlobalCoordinates[i];
}
}
else
{
if (doDerivative_)
{
// Evaluate the derivative of the local function defined on the reference element
const auto aReferenceDerivative = localGFEFunction.evaluateDerivative(localPos);
// Evaluate the derivative of the function defined on the actual element - these are in global coordinates already
auto aDerivative = aReferenceDerivative * geometryJacobianInverse;
for (size_t i = 0; i<derivative.rows; i++)
for (size_t j = 0; j<derivative.cols; j++)
aDerivative[i][j] >>= derivative[i][j];
}
else
{
// Do nothing
}
}
trace_off();
}
/** \brief Compute first and second derivatives of the FE interpolation
*
* This code assumes that `bind` has been called before.
*
* \param[in] tapeNumber The tape number to be used by ADOL-C. Must be the same
* that was given to the `bind` method.
* \param[in] weights Vector of weights that the second derivative is contracted with
* \param[out] embeddedFirstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] firstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] secondDerivative Second derivative of the FE interpolation,
* contracted with the weight vector
*/
void evaluateDerivatives(short tapeNumber,
const double* weights,
Matrix<double>& euclideanFirstDerivative,
Matrix<double>& firstDerivative,
Matrix<FieldMatrix<double,blocksize,blocksize> >& secondDerivative) const
{
const size_t nDofs = localInterpolationRule_.size();
// Number of dependent variables
constexpr auto valueSize = embeddedBlocksize;
constexpr auto derivativeSize = LocalInterpolationRule::DerivativeType::rows * LocalInterpolationRule::DerivativeType::cols;
const size_t m = ((doValue_) ? embeddedBlocksize : 0)
+ ((doDerivative_) ? derivativeSize : 0);
const size_t n = nDofs * embeddedBlocksize;
// Compute the Jacobian of the interpolation map in coordinates of the embedding space.
// This is a single reverse sweep, and hence should relatively cheap.
// However, first we need to wrap the euclideanFirstDerivative matrix by something ADOL-C can understand.
double* embeddedFirstDerivative[euclideanFirstDerivative.N()];
std::size_t counter = 0;
if (doValue_)
{
for (std::size_t i=0; i<valueSize; i++)
embeddedFirstDerivative[counter++] = euclideanFirstDerivative[i].data();
}
if (doDerivative_)
{
for (std::size_t i=0; i<derivativeSize; i++)
embeddedFirstDerivative[counter++] = euclideanFirstDerivative[valueSize+i].data();
}
// Here is the actual AD reverse sweep
jacobian(tapeNumber,
m,
n,
localConfigurationFlat_.data(),
embeddedFirstDerivative);
////////////////////////////////////////////////////////////////////////////////////////
// Do one forward ADOL-C sweep, using the vector in 'orthonormalFrames' as tangents.
// This achieves two things:
// a) It computes the Jacobian of the interpolation in the coordinates system
// spanned by the orthonormalFrames bases.
// b) It is the first of two steps to compute the second derivatives below.
////////////////////////////////////////////////////////////////////////////////////////
const int d = 1; // TODO: What is this? (ADOL-C calls this "highest derivative degree")
// Vector-mode forward sweep
// Disregard the return value. Apparently it is not an error code.
hov_wk_forward(tapeNumber,
m, // Dimension of the function range space
n, // Number of independent variables
d, // ???
2, // Keep all computed Taylor coefficients for later up to this order
numberOfTangents(),
localConfigurationFlat_.data(), // Where to evaluate the derivative
Xppp_,
y_, // [out] The computed value
Yppp_); // [out] The computed Jacobian
if (doValue_)
{
for (size_t i=0; i<m; i++)
for (size_t j=0; j<numberOfTangents(); j++)
firstDerivative[i][j] = Yppp_[i][j][0];
}
else
{
for (size_t i=0; i<m; i++)
for (size_t j=0; j<numberOfTangents(); j++)
firstDerivative[i+valueSize][j] = Yppp_[i][j][0];
}
///////////////////////////////////////////////////////////////////////////
// Do a reverse sweep to compute the second derivative
///////////////////////////////////////////////////////////////////////////
if (doValue_)
{
for (size_t i=0; i<m; i++)
{
Upp_[i][0] = weights[i];
Upp_[i][1] = 0;
}
}
else
{
for (size_t i=0; i<m; i++)
{
Upp_[i][0] = weights[i+valueSize];
Upp_[i][1] = 0;
}
}
// Scalar-mode reverse sweep
// Scalar-mode is sufficient, because we have only one vector of weights.
hos_ov_reverse(tapeNumber,
m, // Number of dependent variables
n, // Number of independent variables
d, // d? Highest derivative degree?
numberOfTangents(), // Number of tangent vectors used in the previous forward sweep
Upp_,
Zppp_);
////////////////////////////////////////////////////////////////////////////////////
// Multiply from the right with the transposed orthonormal frames.
// ADOL-C doesn't do this for us, we have to do it by hand.
////////////////////////////////////////////////////////////////////////////////////
for (size_t col=0; col<nDofs; col++)
{
for (size_t row=0; row<nDofs; row++)
{
SubmatrixView<blocksize,embeddedBlocksize,1> view(Zppp_,row,col);
secondDerivative[row][col] = view.multiplyTransposed(orthonormalFrames_[col]);
}
}
}
};
/** \brief Compute derivatives of GFE interpolation to RealTuple with respect to the coefficients
*
* This is the specialization of the InterpolationDerivatives class for the RealTuple target space.
* Since RealTuple models the standard Euclidean space, geodesic FE interpolation reduces to
* standard FE interpolation, and the derivatives with respect to the coefficients can be
* computed much simpler and faster than for the general case.
*/
template <int gridDim, typename field_type, typename LocalFiniteElement,int dim>
class InterpolationDerivatives<LocalGeodesicFEFunction<gridDim, field_type, LocalFiniteElement, RealTuple<field_type,dim> > >
{
using LocalInterpolationRule = LocalGeodesicFEFunction<gridDim, field_type, LocalFiniteElement, RealTuple<field_type,dim> >;
using TargetSpace = typename LocalInterpolationRule::TargetSpace;
constexpr static auto blocksize = TargetSpace::TangentVector::dimension;
//////////////////////////////////////////////////////////////////////
// Data members
//////////////////////////////////////////////////////////////////////
const LocalInterpolationRule& localInterpolationRule_;
// Whether derivatives of the interpolation value are to be computed
const bool doValue_;
// Whether derivatives of the derivative of the interpolation
// with respect to space are to be computed
const bool doDerivative_;
// Values of all scalar shape functions at the point we are bound to
std::vector<FieldVector<double,1> > shapeFunctionValues_;
// Gradients of all scalar shape functions at the point we are bound to
// TODO: The second dimension must be WorldDim
std::vector<FieldMatrix<double,1,gridDim> > shapeFunctionGradients_;
public:
InterpolationDerivatives(const LocalInterpolationRule& localInterpolationRule,
bool doValue,
bool doDerivative)
: localInterpolationRule_(localInterpolationRule)
, doValue_(doValue)
, doDerivative_(doDerivative)
{}
/** \brief Bind the objects to a particular evaluation point
*
* In particular, this computes the value of the interpolation function at that point,
* and the derivative at that point with respect to space. The default implementation
* uses ADOL-C to tape these evaluations. That is required for the evaluateDerivatives
* method below to be able to compute the derivatives with respect to the coefficients.
*
* \param[in] tapeNumber Number of the ADOL-C tape, not used by this specialization
* \param[in] localPos Local position where the FE function is evaluated
* \param[out] value The function value at the local configuration
* \param[out] derivative The derivative of the interpolation function
* with respect to the evaluation point
*/
template <typename Element>
void bind(short tapeNumber,
const Element& element,
const typename Element::Geometry::LocalCoordinate& localPos,
typename TargetSpace::CoordinateType& valueGlobalCoordinates,
typename LocalInterpolationRule::DerivativeType& derivative)
{
const auto geometryJacobianInverse = element.geometry().jacobianInverse(localPos);
const auto& scalarFiniteElement = localInterpolationRule_.localFiniteElement();
const auto& localBasis = scalarFiniteElement.localBasis();
// Get shape function values
localBasis.evaluateFunction(localPos, shapeFunctionValues_);
// Get shape function Jacobians
localBasis.evaluateJacobian(localPos, shapeFunctionGradients_);
for (auto& gradient : shapeFunctionGradients_)
gradient = gradient * geometryJacobianInverse;
std::fill(valueGlobalCoordinates.begin(), valueGlobalCoordinates.end(), 0.0);
for (size_t i=0; i<shapeFunctionValues_.size(); i++)
valueGlobalCoordinates.axpy(shapeFunctionValues_[i][0],
localInterpolationRule_.coefficient(i).globalCoordinates());
// Derivatives
for (size_t i=0; i<localInterpolationRule_.size(); i++)
for (int j=0; j<dim; j++)
derivative[j].axpy(localInterpolationRule_.coefficient(i).globalCoordinates()[j],
shapeFunctionGradients_[i][0]);
}
/** \brief Compute first and second derivatives of the FE interpolation
*
* This code assumes that `bind` has been called before.
*
* \param[in] tapeNumber The tape number to be used by ADOL-C. Must be the same
* that was given to the `bind` method.
* \param[in] weights Vector of weights that the second derivative is contracted with
* \param[out] embeddedFirstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] firstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] secondDerivative Second derivative of the FE interpolation,
* contracted with the weight vector
*/
void evaluateDerivatives(short tapeNumber,
const double* weights,
Matrix<double>& embeddedFirstDerivative,
Matrix<double>& firstDerivative,
Matrix<FieldMatrix<double,blocksize,blocksize> >& secondDerivative) const
{
const size_t nDofs = localInterpolationRule_.size();
////////////////////////////////////////////////////////////////////
// The first derivative of the finite element interpolation
////////////////////////////////////////////////////////////////////
firstDerivative = 0.0;
// First derivatives of the function value wrt to the FE coefficients
for (size_t i=0; i<nDofs; ++i)
for (int j=0; j<blocksize; ++j)
firstDerivative[j][i*blocksize+j] = shapeFunctionValues_[i][0];
// First derivatives of the function gradient wrt to the FE coefficients
for (size_t i=0; i<nDofs; ++i)
for (int j=0; j<blocksize; ++j)
for (int k=0; k<gridDim; ++k)
firstDerivative[blocksize + j*gridDim + k][i*blocksize+j] = shapeFunctionGradients_[i][0][k];
// For RealTuple, firstDerivative and embeddedFirstDerivative coincide
embeddedFirstDerivative = firstDerivative;
////////////////////////////////////////////////////////////////////
// The second derivative of the finite element interpolation
// For RealTuple objects, all second derivatives are zero
////////////////////////////////////////////////////////////////////
secondDerivative = 0;
}
};
/** \brief Compute derivatives of GFE interpolation to RealTuple with respect to the coefficients
*
* This is the specialization of the InterpolationDerivatives class for the RealTuple target space
* and the LocalProjectedGFEFunction interpolation.
* Since RealTuple models the standard Euclidean space, projection-based FE interpolation reduces to
* standard FE interpolation, and the derivatives with respect to the coefficients can be
* computed much simpler and faster than for the general case.
*/
template <int gridDim, typename field_type, typename LocalFiniteElement,int dim>
class InterpolationDerivatives<LocalProjectedFEFunction<gridDim, field_type, LocalFiniteElement, RealTuple<field_type,dim> > >
{
// TODO: The implementation here would be identical to the geodesic FE case
using LocalInterpolationRule = LocalProjectedFEFunction<gridDim, field_type, LocalFiniteElement, RealTuple<field_type,dim> >;
using TargetSpace = typename LocalInterpolationRule::TargetSpace;
constexpr static auto blocksize = TargetSpace::TangentVector::dimension;
//////////////////////////////////////////////////////////////////////
// Data members
//////////////////////////////////////////////////////////////////////
const LocalInterpolationRule& localInterpolationRule_;
// Whether derivatives of the interpolation value are to be computed
const bool doValue_;
// Whether derivatives of the derivative of the interpolation
// with respect to space are to be computed
const bool doDerivative_;
// Values of all scalar shape functions at the point we are bound to
std::vector<FieldVector<double,1> > shapeFunctionValues_;
// Gradients of all scalar shape functions at the point we are bound to
// TODO: The second dimension must be WorldDim
std::vector<FieldMatrix<double,1,gridDim> > shapeFunctionGradients_;
public:
InterpolationDerivatives(const LocalInterpolationRule& localInterpolationRule,
bool doValue, bool doDerivative)
: localInterpolationRule_(localInterpolationRule)
, doValue_(doValue)
, doDerivative_(doDerivative)
{}
/** \brief Bind the objects to a particular evaluation point
*
* In particular, this computes the value of the interpolation function at that point,
* and the derivative at that point with respect to space. The default implementation
* uses ADOL-C to tape these evaluations. That is required for the evaluateDerivatives
* method below to be able to compute the derivatives with respect to the coefficients.
*
* \param[in] tapeNumber Number of the ADOL-C tape, not used by this specialization
* \param[in] localPos Local position where the FE function is evaluated
* \param[out] value The function value at the local configuration
* \param[out] derivative The derivative of the interpolation function
* with respect to the evaluation point
*/
template <typename Element>
void bind(short tapeNumber,
const Element& element,
const typename Element::Geometry::LocalCoordinate& localPos,
typename TargetSpace::CoordinateType& valueGlobalCoordinates,
typename LocalInterpolationRule::DerivativeType& derivative)
{
const auto geometryJacobianInverse = element.geometry().jacobianInverse(localPos);
const auto& scalarFiniteElement = localInterpolationRule_.localFiniteElement();
const auto& localBasis = scalarFiniteElement.localBasis();
// Get shape function values
localBasis.evaluateFunction(localPos, shapeFunctionValues_);
// Get shape function Jacobians
localBasis.evaluateJacobian(localPos, shapeFunctionGradients_);
for (auto& gradient : shapeFunctionGradients_)
gradient = gradient * geometryJacobianInverse;
std::fill(valueGlobalCoordinates.begin(), valueGlobalCoordinates.end(), 0.0);
for (size_t i=0; i<shapeFunctionValues_.size(); i++)
valueGlobalCoordinates.axpy(shapeFunctionValues_[i][0],
localInterpolationRule_.coefficient(i).globalCoordinates());
// Derivatives
for (size_t i=0; i<localInterpolationRule_.size(); i++)
for (int j=0; j<dim; j++)
derivative[j].axpy(localInterpolationRule_.coefficient(i).globalCoordinates()[j],
shapeFunctionGradients_[i][0]);
}
/** \brief Compute first and second derivatives of the FE interpolation
*
* This code assumes that `bind` has been called before.
*
* \param[in] tapeNumber The tape number to be used by ADOL-C. Not used by this specialization
* \param[in] weights Vector of weights that the second derivative is contracted with
* \param[out] embeddedFirstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] firstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] secondDerivative Second derivative of the FE interpolation,
* contracted with the weight vector
*/
void evaluateDerivatives(short tapeNumber,
const double* weights,
Matrix<double>& embeddedFirstDerivative,
Matrix<double>& firstDerivative,
Matrix<FieldMatrix<double,blocksize,blocksize> >& secondDerivative) const
{
const size_t nDofs = localInterpolationRule_.size();
////////////////////////////////////////////////////////////////////
// The first derivative of the finite element interpolation
////////////////////////////////////////////////////////////////////
firstDerivative = 0.0;
// First derivatives of the function value wrt to the FE coefficients
for (size_t i=0; i<nDofs; ++i)
for (int j=0; j<blocksize; ++j)
firstDerivative[j][i*blocksize+j] = shapeFunctionValues_[i][0];
// First derivatives of the function gradient wrt to the FE coefficients
for (size_t i=0; i<nDofs; ++i)
for (int j=0; j<blocksize; ++j)
for (int k=0; k<gridDim; ++k)
firstDerivative[blocksize + j*gridDim + k][i*blocksize+j] = shapeFunctionGradients_[i][0][k];
// For RealTuple, firstDerivative and embeddedFirstDerivative coincide
embeddedFirstDerivative = firstDerivative;
////////////////////////////////////////////////////////////////////
// The second derivative of the finite element interpolation
// For RealTuple objects, all second derivatives are zero
////////////////////////////////////////////////////////////////////
secondDerivative = 0;
}
};
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/** \brief Compute derivatives of nonconforming interpolation with respect to the coefficients
*
* This is the specialization of the InterpolationDerivatives class for the nonconforming
* interpolation. No matter what the target space is, the interpolation is always
* Euclidean in the surrounding space.
*/
template <int gridDim, typename ctype, typename LocalFiniteElement, typename TargetSpace>
class InterpolationDerivatives<LocalProjectedFEFunction<gridDim, ctype, LocalFiniteElement, TargetSpace, false> >
{
using LocalInterpolationRule = LocalProjectedFEFunction<gridDim, ctype, LocalFiniteElement, TargetSpace, false>;
using CoordinateType = typename TargetSpace::CoordinateType;
constexpr static auto blocksize = TargetSpace::TangentVector::dimension;
constexpr static auto embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
//////////////////////////////////////////////////////////////////////
// Data members
//////////////////////////////////////////////////////////////////////
const LocalInterpolationRule& localInterpolationRule_;
// Whether derivatives of the interpolation value are to be computed
const bool doValue_;
// Whether derivatives of the derivative of the interpolation
// with respect to space are to be computed
const bool doDerivative_;
// Values of all scalar shape functions at the point we are bound to
std::vector<FieldVector<double,1> > shapeFunctionValues_;
// Gradients of all scalar shape functions at the point we are bound to
// TODO: The second dimension must be WorldDim
std::vector<FieldMatrix<double,1,gridDim> > shapeFunctionGradients_;
// TODO: Don't hardcode FieldMatrix
std::vector<FieldMatrix<double,blocksize,embeddedBlocksize> > orthonormalFrames_;
public:
InterpolationDerivatives(const LocalInterpolationRule& localInterpolationRule,
bool doValue, bool doDerivative)
: localInterpolationRule_(localInterpolationRule)
, doValue_(doValue)
, doDerivative_(doDerivative)
{
// Precompute the orthonormal frames
orthonormalFrames_.resize(localInterpolationRule_.size());
for (size_t i=0; i<localInterpolationRule_.size(); ++i)
orthonormalFrames_[i] = localInterpolationRule_.coefficient(i).orthonormalFrame();
}
/** \brief Bind the objects to a particular evaluation point
*
* In particular, this computes the value of the interpolation function at that point,
* and the derivative at that point with respect to space. The default implementation
* uses ADOL-C to tape these evaluations. That is required for the evaluateDerivatives
* method below to be able to compute the derivatives with respect to the coefficients.
*
* \param[in] tapeNumber Number of the ADOL-C tape, not used by this specialization
* \param[in] localPos Local position where the FE function is evaluated
* \param[out] value The function value at the local configuration
* \param[out] derivative The derivative of the interpolation function
* with respect to the evaluation point
*/
template <typename Element>
void bind(short tapeNumber,
const Element& element,
const typename Element::Geometry::LocalCoordinate& localPos,
typename TargetSpace::CoordinateType& valueGlobalCoordinates,
typename LocalInterpolationRule::DerivativeType& derivative)
{
const auto geometryJacobianInverse = element.geometry().jacobianInverse(localPos);
const auto& scalarFiniteElement = localInterpolationRule_.localFiniteElement();
const auto& localBasis = scalarFiniteElement.localBasis();
// Get shape function values
localBasis.evaluateFunction(localPos, shapeFunctionValues_);
// Get shape function Jacobians
localBasis.evaluateJacobian(localPos, shapeFunctionGradients_);
for (auto& gradient : shapeFunctionGradients_)
gradient = gradient * geometryJacobianInverse;
std::fill(valueGlobalCoordinates.begin(), valueGlobalCoordinates.end(), 0.0);
for (size_t i=0; i<shapeFunctionValues_.size(); i++)
valueGlobalCoordinates.axpy(shapeFunctionValues_[i][0],
localInterpolationRule_.coefficient(i).globalCoordinates());
// Derivatives
for (size_t i=0; i<localInterpolationRule_.size(); i++)
for (int j=0; j<TargetSpace::CoordinateType::dimension; j++)
derivative[j].axpy(localInterpolationRule_.coefficient(i).globalCoordinates()[j],
shapeFunctionGradients_[i][0]);
}
/** \brief Compute first and second derivatives of the FE interpolation
*
* This code assumes that `bind` has been called before.
*
* \param[in] tapeNumber The tape number to be used by ADOL-C. Not used by this specialization
* \param[in] weights Vector of weights that the second derivative is contracted with
* \param[out] embeddedFirstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] firstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] secondDerivative Second derivative of the FE interpolation,
* contracted with the weight vector
*/
void evaluateDerivatives(short tapeNumber,
const double* weights,
Matrix<double>& embeddedFirstDerivative,
Matrix<double>& firstDerivative,
Matrix<FieldMatrix<double,blocksize,blocksize> >& secondDerivative) const
{
constexpr size_t valueSize = TargetSpace::CoordinateType::dimension;
constexpr size_t derivativeSize = TargetSpace::CoordinateType::dimension * gridDim;
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
const size_t nDofs = localInterpolationRule_.size();
////////////////////////////////////////////////////////////////////
// The first derivative of the finite element interpolation
////////////////////////////////////////////////////////////////////
Matrix<double> partialDerivative(embeddedFirstDerivative.N(), embeddedFirstDerivative.M());
partialDerivative = 0.0;
// First derivatives of the function value wrt to the FE coefficients
for (size_t i=0; i<nDofs; ++i)
for (int j=0; j<embeddedBlocksize; ++j)
partialDerivative[j][i*embeddedBlocksize+j] = shapeFunctionValues_[i][0];
// First derivatives of the function gradient wrt to the FE coefficients
for (size_t i=0; i<nDofs; ++i)
for (int j=0; j<embeddedBlocksize; ++j)
for (int k=0; k<gridDim; ++k)
partialDerivative[embeddedBlocksize + j*gridDim + k][i*embeddedBlocksize+j] = shapeFunctionGradients_[i][0][k];
// Euclidean derivative: Derivatives in the direction of the projected canonical vectors
for (std::size_t j=0; j<nDofs; ++j)
{
for (int k=0; k<embeddedBlocksize; k++)
{
// k-th canonical unit vector
FieldVector<double,embeddedBlocksize> direction(0);
direction[k] = 1.0;
// Project it onto tangent space at the j-th coefficient
auto projectedDirection = localInterpolationRule_.coefficient(j).projectOntoTangentSpace(direction);
// The interpolation value
if (doValue_)
{
for (size_t i=0; i<CoordinateType::size(); ++i)
{
// Alias name, for shorter notation
auto& entry = embeddedFirstDerivative[i][j*embeddedBlocksize+k];
entry = 0;
for (int l=0; l<embeddedBlocksize; l++)
entry += projectedDirection[l] * partialDerivative[i][j*embeddedBlocksize+l];
}
}
// The interpolation derivative with respect to space
if (doDerivative_)
{
for (size_t alpha=0; alpha<CoordinateType::size(); alpha++)
{
for (size_t beta=0; beta<gridDim; beta++)
{
// Alias name, for shorter notation
auto& entry = embeddedFirstDerivative[CoordinateType::size() + alpha*gridDim+beta][j*embeddedBlocksize+k];
entry = 0;
for (int l=0; l<embeddedBlocksize; l++)
entry += projectedDirection[l] * partialDerivative[CoordinateType::size() + alpha*gridDim+beta][j*embeddedBlocksize+l];
}
}
}
}
}
// Riemannian derivative: Derivatives in the directions of the orthonormal frame vectors
for (std::size_t j=0; j<nDofs; ++j)
{
for (int k=0; k<blocksize; k++)
{
// k-th canonical unit tangent vector
FieldVector<double,embeddedBlocksize> direction = orthonormalFrames_[j][k];
// The interpolation value
if (doValue_)
{
for (size_t i=0; i<CoordinateType::size(); ++i)
{
// Alias name, for shorter notation
auto& entry = firstDerivative[i][j*blocksize+k];
entry = 0;
for (int l=0; l<embeddedBlocksize; l++)
entry += direction[l] * partialDerivative[i][j*embeddedBlocksize+l];
}
}
// The interpolation derivative with respect to space
if (doDerivative_)
{
for (size_t alpha=0; alpha<CoordinateType::size(); alpha++)
{
for (size_t beta=0; beta<gridDim; beta++)
{
// Alias name, for shorter notation
auto& entry = firstDerivative[CoordinateType::size() + alpha*gridDim+beta][j*blocksize+k];
entry = 0;
for (int l=0; l<embeddedBlocksize; l++)
entry += direction[l] * partialDerivative[CoordinateType::size() + alpha*gridDim+beta][j*embeddedBlocksize+l];
}
}
}
}
}
////////////////////////////////////////////////////////////////////
// The second derivative of the finite element interpolation
////////////////////////////////////////////////////////////////////
// From this, compute the Hessian with respect to the manifold (which we assume here is embedded
// isometrically in a Euclidean space.
// For the detailed explanation of the following see: Absil, Mahoney, Trumpf, "An extrinsic look
// at the Riemannian Hessian".
if (!doDerivative_)
return;
secondDerivative = 0;
//////////////////////////////////////////////////////////////////////////
// The projection of the Euclidean first derivative of the finite element interpolation
// onto the normal space of the unit sphere.
//////////////////////////////////////////////////////////////////////////
Matrix<double> normalFirstDerivative(embeddedFirstDerivative.N(), nDofs);
for (std::size_t j=0; j<nDofs; ++j)
{
// The space is a sphere. Therefore the normal at a point x is x itself.
const auto& direction = localInterpolationRule_.coefficient(j).globalCoordinates();
// The interpolation value
if (doValue_)
{
for (size_t i=0; i<CoordinateType::size(); ++i)
{
// Alias name, for shorter notation
auto& entry = normalFirstDerivative[i][j];
entry = 0;
for (int l=0; l<embeddedBlocksize; l++)
entry += direction[l] * partialDerivative[i][j*embeddedBlocksize+l];
}
}
// The interpolation derivative with respect to space
if (doDerivative_)
{
for (size_t alpha=0; alpha<CoordinateType::size(); alpha++)
{
for (size_t beta=0; beta<gridDim; beta++)
{
// Alias name, for shorter notation
auto& entry = normalFirstDerivative[CoordinateType::size() + alpha*gridDim+beta][j];
entry = 0;
for (int l=0; l<embeddedBlocksize; l++)
entry += direction[l] * partialDerivative[CoordinateType::size() + alpha*gridDim+beta][j*embeddedBlocksize+l];
}
}
}
}
// Project Euclidean gradient onto the normal space
// The range of input variables that the density depends on
const size_t begin = (doValue_) ? 0 : valueSize;
const size_t end = (doDerivative_) ? valueSize + derivativeSize : valueSize;
Matrix<FieldMatrix<double,1,embeddedBlocksize> > projectedGradient(embeddedFirstDerivative.N(),nDofs);
for (size_t i=begin; i<end; i++)
for (size_t j=0; j<nDofs; j++)
projectedGradient[i][j][0] = normalFirstDerivative[i][j] * localInterpolationRule_.coefficient(j).globalCoordinates();