Newer
Older
#ifndef ROTATION_HH
#define ROTATION_HH
/** \file
\brief Define rotations in Euclidean spaces
*/
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/exceptions.hh>
#include "quaternion.hh"

Oliver Sander
committed
#include <dune/gfe/tensor3.hh>
#include <dune/gfe/unitvector.hh>
template <int dim, class T>
class Rotation
{
};
/** \brief Specialization for dim==2
\tparam T The type used for coordinates
*/
template <class T>
class Rotation<2,T>
{
public:
/** \brief The type used for coordinates */
typedef T ctype;
/** \brief Global coordinates wrt an isometric embedding function are available */
static const bool globalIsometricCoordinates = false;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */
typedef Dune::FieldVector<T,1> TangentVector;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix
This vector is not really embedded in anything. I have to make my notation more consistent! */
typedef Dune::FieldVector<T,1> EmbeddedTangentVector;
/** \brief Default constructor, create the identity rotation */
Rotation()
: angle_(0)
{}
Rotation(const T& angle)
: angle_(angle)
{}
/** \brief Return the identity element */
static Rotation<2,T> identity() {
// Default constructor creates an identity
Rotation<2,T> id;
return id;
}
static T distance(const Rotation<2,T>& a, const Rotation<2,T>& b) {
T dist = a.angle_ - b.angle_;
while (dist < 0)
dist += 2*M_PI;
while (dist > 2*M_PI)
dist -= 2*M_PI;
return (dist <= M_PI) ? dist : 2*M_PI - dist;
}
/** \brief The exponential map from a given point $p \in SO(3)$. */
static Rotation<2,T> exp(const Rotation<2,T>& p, const TangentVector& v) {
Rotation<2,T> result = p;
result.angle_ += v;
return result;
}
/** \brief The exponential map from \f$ \mathfrak{so}(2) \f$ to \f$ SO(2) \f$
*/
static Rotation<2,T> exp(const Dune::FieldVector<T,1>& v) {
Rotation<2,T> result;
result.angle_ = v[0];
return result;
}
static TangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a,
const Rotation<2,T>& b) {
// This assertion is here to remind me of the following laziness:
// The difference has to be computed modulo 2\pi
assert( std::fabs(a.angle_ - b.angle_) <= M_PI );
return -2 * (a.angle_ - b.angle_);
static Dune::FieldMatrix<double,1,1> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a,
const Rotation<2,T>& b) {
return 2;
}
/** \brief Right multiplication */
Rotation<2,T> mult(const Rotation<2,T>& other) const {
Rotation<2,T> q = *this;
q.angle_ += other.angle_;
return q;
}
/** \brief Compute an orthonormal basis of the tangent space of SO(3).
This basis is of course not globally continuous.
*/
Dune::FieldMatrix<T,1,1> orthonormalFrame() const {
return Dune::FieldMatrix<T,1,1>(1);
}
//private:
// We store the rotation as an angle
double angle_;
};
//! Send configuration to output stream
template <class T>
std::ostream& operator<< (std::ostream& s, const Rotation<2,T>& c)
{
return s << "[" << c.angle_ << " (" << std::sin(c.angle_) << " " << std::cos(c.angle_) << ") ]";
}
/** \brief Specialization for dim==3
Uses unit quaternion coordinates.
*/
template <class T>
class Rotation<3,T> : public Quaternion<T>
{
/** \brief Computes sin(x/2) / x without getting unstable for small x */
static T sincHalf(const T& x) {

Oliver Sander
committed
return (x < 1e-4) ? 0.5 - (x*x/48) : std::sin(x/2)/x;
/** \brief Compute the derivative of arccos^2 without getting unstable for x close to 1 */
static double derivativeOfArcCosSquared(const double& x) {
const double eps = 1e-12;
if (x > 1-eps) { // regular expression is unstable, use the series expansion instead
return -2 + 2*(x-1)/3 - 4/15*(x-1)*(x-1) + 4/35*(x-1)*(x-1)*(x-1);
} else if (x < -1+eps) { // The function is not differentiable
DUNE_THROW(Dune::Exception, "arccos^2 is not differentiable at x==-1!");
} else
return -2*std::acos(x) / std::sqrt(1-x*x);
/** \brief The type used for coordinates */
typedef T ctype;
/** \brief Global coordinates wrt an isometric embedding function are available */

Oliver Sander
committed
static const bool globalIsometricCoordinates = true;

Oliver Sander
committed
/** \brief The type used for global coordinates */
typedef Dune::FieldVector<double,4> CoordinateType;
/** \brief Dimension of the manifold formed by the 3d rotations */
static const int dim = 3;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */
typedef Dune::FieldVector<T,3> TangentVector;

Oliver Sander
committed
/** \brief A tangent vector as a vector in the surrounding coordinate space */
typedef Quaternion<T> EmbeddedTangentVector;
/** \brief Default constructor creates the identity element */
Rotation()
: Quaternion<T>(0,0,0,1)
{}

Oliver Sander
committed
Rotation<3,T>(const Dune::array<T,4>& c)
{
for (int i=0; i<4; i++)
(*this)[i] = c[i];

Oliver Sander
committed
*this /= this->two_norm();
}
Rotation<3,T>(const Dune::FieldVector<T,4>& c)
: Quaternion<T>(c)
{
*this /= this->two_norm();
}
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
Rotation<3,T>(Dune::FieldVector<T,3> axis, T angle)
: Quaternion<T>(axis, angle)
{}
/** \brief Assignment from a quaternion
\deprecated Using this is bad design.
*/
Rotation& operator=(const Quaternion<T>& other) {
(*this)[0] = other[0];
(*this)[1] = other[1];
(*this)[2] = other[2];
(*this)[3] = other[3];
return *this;
}
/** \brief Return the identity element */
static Rotation<3,T> identity() {
// Default constructor creates an identity
Rotation<3,T> id;
return id;
}
/** \brief Right multiplication */
Rotation<3,T> mult(const Rotation<3,T>& other) const {
Rotation<3,T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}

Oliver Sander
committed
/** \brief Right multiplication with a quaternion
\todo do we really need this?*/
Rotation<3,T> mult(const Quaternion<T>& other) const {
Rotation<3,T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/

Oliver Sander
committed
static Rotation<3,T> exp(const Dune::FieldVector<T,3>& v) {

Oliver Sander
committed
return exp(v[0], v[1], v[2]);
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/
static Rotation<3,T> exp(const T& v0, const T& v1, const T& v2) {
Rotation<3,T> q;
T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2);
// Stabilization for small |v| due to Grassia
T sin = sincHalf(normV);
// if normV == 0 then q = (0,0,0,1)
assert(!isnan(sin));
q[0] = sin * v0;
q[1] = sin * v1;
q[2] = sin * v2;
q[3] = std::cos(normV/2);
return q;
}

Oliver Sander
committed

Oliver Sander
committed
/** \brief The exponential map from a given point $p \in SO(3)$. */
static Rotation<3,T> exp(const Rotation<3,T>& p, const TangentVector& v) {
Rotation<3,T> corr = exp(v);
return p.mult(corr);
}
/** \brief The exponential map from a given point $p \in SO(3)$.
There may be a more direct way to implement this
\param v A tangent vector in quaternion coordinates
*/
static Rotation<3,T> exp(const Rotation<3,T>& p, const EmbeddedTangentVector& v) {

Oliver Sander
committed
assert( std::fabs(p*v) < 1e-8 );
// The vector v as a quaternion
Quaternion<T> vQuat(v);
// left multiplication by the inverse base point yields a tangent vector at the identity
Quaternion<T> vAtIdentity = p.inverse().mult(vQuat);
assert( std::fabs(vAtIdentity[3]) < 1e-8 );
// vAtIdentity as a skew matrix
TangentVector vMatrix;
vMatrix[0] = 2*vAtIdentity[0];
vMatrix[1] = 2*vAtIdentity[1];
vMatrix[2] = 2*vAtIdentity[2];
// The actual exponential map
return exp(p, vMatrix);

Oliver Sander
committed
static Rotation<3,T> exp(const Rotation<3,T>& p, const Dune::FieldVector<T,4>& v) {
assert( std::fabs(p*v) < 1e-8 );
// The vector v as a quaternion
Quaternion<T> vQuat(v);
// left multiplication by the inverse base point yields a tangent vector at the identity
Quaternion<T> vAtIdentity = p.inverse().mult(vQuat);
assert( std::fabs(vAtIdentity[3]) < 1e-8 );
// vAtIdentity as a skew matrix
TangentVector vMatrix;
vMatrix[0] = 2*vAtIdentity[0];
vMatrix[1] = 2*vAtIdentity[1];
vMatrix[2] = 2*vAtIdentity[2];
// The actual exponential map
return exp(p, vMatrix);
}

Oliver Sander
committed
static Dune::FieldMatrix<T,4,3> Dexp(const Dune::FieldVector<T,3>& v) {
Dune::FieldMatrix<T,4,3> result(0);
T norm = v.two_norm();
for (int i=0; i<3; i++) {
for (int m=0; m<3; m++) {

Oliver Sander
committed
/** \todo Isn't there a better way to implement this stably? */
? 0.5 * (i==m)
: 0.5 * std::cos(norm/2) * v[i] * v[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - v[i]*v[m]/(norm*norm));
}
result[3][i] = - 0.5 * sincHalf(norm) * v[i];
}
return result;
}
static void DDexp(const Dune::FieldVector<T,3>& v,
Dune::array<Dune::FieldMatrix<T,3,3>, 4>& result) {
T norm = v.two_norm();

Oliver Sander
committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
for (int m=0; m<4; m++)
result[m] = 0;
for (int i=0; i<3; i++)
result[3][i][i] = -0.25;
} else {
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
for (int m=0; m<3; m++) {
result[m][i][j] = -0.25*std::sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm)
+ ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm))
* (0.5*std::cos(norm/2) - sincHalf(norm)) / (norm*norm);
}
result[3][i][j] = -0.5/(norm*norm)
* ( 0.5*std::cos(norm/2)*v[i]*v[j] + std::sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm));
}
}
}
}
/** \brief The inverse of the exponential map */
static Dune::FieldVector<T,3> expInv(const Rotation<3,T>& q) {
// Compute v = exp^{-1} q
// Due to numerical dirt, q[3] may be larger than 1.
// In that case, use 1 instead of q[3].
Dune::FieldVector<T,3> v;
if (q[3] > 1.0) {
v = 0;
} else {
T invSinc = 1/sincHalf(2*std::acos(q[3]));
v[0] = q[0] * invSinc;
v[1] = q[1] * invSinc;
v[2] = q[2] * invSinc;
}
return v;
}
/** \brief The derivative of the inverse of the exponential map, evaluated at q */
static Dune::FieldMatrix<T,3,4> DexpInv(const Rotation<3,T>& q) {
// Compute v = exp^{-1} q
Dune::FieldVector<T,3> v = expInv(q);
// The derivative of exp at v
Dune::FieldMatrix<T,4,3> A = Dexp(v);
// Compute the Moore-Penrose pseudo inverse A^+ = (A^T A)^{-1} A^T
Dune::FieldMatrix<T,3,3> ATA;
for (int i=0; i<3; i++)
for (int j=0; j<3; j++) {
ATA[i][j] = 0;
for (int k=0; k<4; k++)
ATA[i][j] += A[k][i] * A[k][j];
}
ATA.invert();
Dune::FieldMatrix<T,3,4> APseudoInv;
for (int i=0; i<3; i++)
for (int j=0; j<4; j++) {
APseudoInv[i][j] = 0;
for (int k=0; k<3; k++)
APseudoInv[i][j] += ATA[i][k] * A[j][k];
}
return APseudoInv;
}
static T distance(const Rotation<3,T>& a, const Rotation<3,T>& b) {
Quaternion<T> diff = a;
diff.invert();
diff = diff.mult(b);
// Compute the geodesical distance between a and b on SO(3)
// Due to numerical dirt, diff[3] may be larger than 1.
// In that case, use 1 instead of diff[3].
return (diff[3] > 1.0)
? 0
: 2*std::acos( std::min(diff[3],1.0) );
}

Oliver Sander
committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/** \brief Compute the vector in T_aSO(3) that is mapped by the exponential map
to the geodesic from a to b
*/
static Dune::FieldVector<T,3> difference(const Rotation<3,T>& a, const Rotation<3,T>& b) {
Quaternion<T> diff = a;
diff.invert();
diff = diff.mult(b);
// Compute the geodesical distance between a and b on SO(3)
// Due to numerical dirt, diff[3] may be larger than 1.
// In that case, use 1 instead of diff[3].
Dune::FieldVector<T,3> v;
if (diff[3] > 1.0) {
v = 0;
} else {
T dist = 2*std::acos( std::min(diff[3],1.0) );
T invSinc = 1/sincHalf(dist);
// Compute difference on T_a SO(3)
v[0] = diff[0] * invSinc;
v[1] = diff[1] * invSinc;
v[2] = diff[2] * invSinc;
}
return v;
}
static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<3,T>& p,
const Rotation<3,T>& q) {
Rotation<3,T> pInv = p;
pInv.invert();
// the forth component of pInv times q
double pInvq_4 = - pInv[0]*q[0] - pInv[1]*q[1] - pInv[2]*q[2] + pInv[3]*q[3];
double arccosSquaredDer_pInvq_4 = derivativeOfArcCosSquared(pInvq_4);
EmbeddedTangentVector result;
result[0] = -4 * arccosSquaredDer_pInvq_4 * pInv[0];
result[1] = -4 * arccosSquaredDer_pInvq_4 * pInv[1];
result[2] = -4 * arccosSquaredDer_pInvq_4 * pInv[2];
result[3] = 4 * arccosSquaredDer_pInvq_4 * pInv[3];
// project onto the tangent space at q
EmbeddedTangentVector projectedResult = result;
projectedResult.axpy(-1*(q*result), q);
assert(std::fabs(projectedResult * q) < 1e-7);
return projectedResult;

Oliver Sander
committed
}

Oliver Sander
committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/** \brief Compute the Hessian of the squared distance function keeping the first argument fixed
Unlike the distance itself the squared distance is differentiable at zero
*/
static Dune::FieldMatrix<double,4,4> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) {
// use the functionality from the unitvector class
Dune::FieldMatrix<double,4,4> result = UnitVector<4>::secondDerivativeOfDistanceSquaredWRTSecondArgument(p.globalCoordinates(),
q.globalCoordinates());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result *= 4;
return result;
}
/** \brief Compute the mixed second derivate \partial d^2 / \partial da db
Unlike the distance itself the squared distance is differentiable at zero
*/
static Dune::FieldMatrix<double,4,4> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) {
// use the functionality from the unitvector class
Dune::FieldMatrix<double,4,4> result = UnitVector<4>::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(p.globalCoordinates(),
q.globalCoordinates());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result *= 4;
return result;
}
/** \brief Compute the third derivative \partial d^3 / \partial dq^3
Unlike the distance itself the squared distance is differentiable at zero
*/
static Tensor3<double,4,4,4> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<3,T>& p, const Rotation<3,T>& q) {
// use the functionality from the unitvector class
Tensor3<double,4,4,4> result = UnitVector<4>::thirdDerivativeOfDistanceSquaredWRTSecondArgument(p.globalCoordinates(),
q.globalCoordinates());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result *= 4;
return result;
}
/** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2
Unlike the distance itself the squared distance is differentiable at zero
*/
static Tensor3<double,4,4,4> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const Rotation<3,T>& p, const Rotation<3,T>& q) {
// use the functionality from the unitvector class
Tensor3<double,4,4,4> result = UnitVector<4>::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(p.globalCoordinates(),
q.globalCoordinates());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result *= 4;
return result;
}

Oliver Sander
committed

Oliver Sander
committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/** \brief Interpolate between two rotations */
static Rotation<3,T> interpolate(const Rotation<3,T>& a, const Rotation<3,T>& b, double omega) {
// Compute difference on T_a SO(3)
Dune::FieldVector<T,3> v = difference(a,b);
v *= omega;
return a.mult(exp(v[0], v[1], v[2]));
}
/** \brief Interpolate between two rotations
\param omega must be between 0 and 1
*/
static Quaternion<T> interpolateDerivative(const Rotation<3,T>& a, const Rotation<3,T>& b,
double omega) {
Quaternion<T> result(0);
// Compute difference on T_a SO(3)
Dune::FieldVector<double,3> xi = difference(a,b);
Dune::FieldVector<double,3> v = xi;
v *= omega;
// //////////////////////////////////////////////////////////////
// v now contains the derivative at 'a'. The derivative at
// the requested site is v pushed forward by Dexp.
// /////////////////////////////////////////////////////////////
Dune::FieldMatrix<double,4,3> diffExp = Dexp(v);
diffExp.umv(xi,result);
return a.Quaternion<T>::mult(result);
}
/** \brief Return the corresponding orthogonal matrix */
void matrix(Dune::FieldMatrix<T,3,3>& m) const {
m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
}
/** \brief Set rotation from orthogonal matrix
We tacitly assume that the matrix really is orthogonal */
void set(const Dune::FieldMatrix<T,3,3>& m) {
// Easier writing
Dune::FieldVector<T,4>& p = (*this);
// The following equations for the derivation of a unit quaternion from a rotation
// matrix comes from 'E. Salamin, Application of Quaternions to Computation with
// Rotations, Technical Report, Stanford, 1974'
p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
// avoid rounding problems
if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
p[0] = std::sqrt(p[0]);
// r_x r_y = (R_12 + R_21) / 4
p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
// r_x r_z = (R_13 + R_31) / 4
p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
// r_0 r_x = (R_32 - R_23) / 4
p[3] = (m[2][1] - m[1][2]) / 4 / p[0];
} else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
p[1] = std::sqrt(p[1]);
// r_x r_y = (R_12 + R_21) / 4
p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
// r_y r_z = (R_23 + R_32) / 4
p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
// r_0 r_y = (R_13 - R_31) / 4
p[3] = (m[0][2] - m[2][0]) / 4 / p[1];
} else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
p[2] = std::sqrt(p[2]);
// r_x r_z = (R_13 + R_31) / 4
p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
// r_y r_z = (R_23 + R_32) / 4
p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
// r_0 r_z = (R_21 - R_12) / 4
p[3] = (m[1][0] - m[0][1]) / 4 / p[2];
} else {
p[3] = std::sqrt(p[3]);
// r_0 r_x = (R_32 - R_23) / 4
p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
// r_0 r_y = (R_13 - R_31) / 4
p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
// r_0 r_z = (R_21 - R_12) / 4
p[2] = (m[1][0] - m[0][1]) / 4 / p[3];
}
}
/** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
with this one.
This is used to compute the strain in rod problems.
See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
Rod Mechanics', page 83
*/
Quaternion<T> B(int m) const {
assert(m>=0 && m<3);
Quaternion<T> r;
if (m==0) {
r[0] = (*this)[3];
r[1] = (*this)[2];
r[2] = -(*this)[1];
r[3] = -(*this)[0];
} else if (m==1) {
r[0] = -(*this)[2];
r[1] = (*this)[3];
r[2] = (*this)[0];
r[3] = -(*this)[1];
} else {
r[0] = (*this)[1];
r[1] = -(*this)[0];
r[2] = (*this)[3];
r[3] = -(*this)[2];
}
return r;
}

Oliver Sander
committed
/** \brief Project tangent vector of R^n onto the tangent space */
EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const {
EmbeddedTangentVector result = v;
EmbeddedTangentVector data = *this;
result.axpy(-1*(data*result), data);
return result;
}
/** \brief The global coordinates, if you really want them */
const CoordinateType& globalCoordinates() const {
return *this;
}
/** \brief Compute an orthonormal basis of the tangent space of SO(3).

Oliver Sander
committed
This basis is of course not globally continuous.
*/
Dune::FieldMatrix<double,3,4> orthonormalFrame() const {
Dune::FieldMatrix<double,3,4> result;
for (int i=0; i<3; i++)
result[i] = B(i);
return result;
}