Newer
Older
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/matrix-vector/genericvectortools.hh>
#include <dune/fufem/discretizationerror.hh>
#include <dune/fufem/dunepython.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/unitvector.hh>
#include <dune/gfe/realtuple.hh>

Sander, Oliver
committed
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/localprojectedfefunction.hh>
#include <dune/gfe/embeddedglobalgfefunction.hh>
// grid dimension
const int dim = 2;
const int dimworld = 2;
using namespace Dune;
template <class GridView, int order, class TargetSpace>
void measureDiscreteEOC(const GridView gridView,
const GridView referenceGridView,
const ParameterTree& parameterSet)
{
typedef std::vector<TargetSpace> SolutionType;
//////////////////////////////////////////////////////////////////////////////////
// Construct the scalar function space bases corresponding to the GFE space
//////////////////////////////////////////////////////////////////////////////////
typedef Dune::Functions::LagrangeBasis<GridView, order> FEBasis;
FEBasis referenceFEBasis(referenceGridView);
//typedef LocalGeodesicFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
//if (parameterSet["interpolationMethod"] != "geodesic")
// DUNE_THROW(Exception, "Inconsistent choice of interpolation method");
typedef GFE::LocalProjectedFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
if (parameterSet["interpolationMethod"] != "projected")
DUNE_THROW(Exception, "Inconsistent choice of interpolation method");

Sander, Oliver
committed
std::cout << "Using local interpolation: " << className<LocalInterpolationRule>() << std::endl;
//////////////////////////////////////////////////////////////////////////////////

Sander, Oliver
committed
// Read the data whose error is to be measured
//////////////////////////////////////////////////////////////////////////////////
// Input data
typedef BlockVector<typename TargetSpace::CoordinateType> EmbeddedVectorType;
EmbeddedVectorType embeddedX(feBasis.size());
std::ifstream inFile(parameterSet.get<std::string>("simulationData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("simulationData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("simulationData") << "' does not have the correct size!");
inFile.close();
SolutionType x(embeddedX.size());
for (size_t i=0; i<x.size(); i++)
x[i] = TargetSpace(embeddedX[i]);
// The numerical solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> numericalSolution(feBasis, x);
///////////////////////////////////////////////////////////////////////////
// Read the reference configuration
///////////////////////////////////////////////////////////////////////////
EmbeddedVectorType embeddedReferenceX(referenceFEBasis.size());
inFile.open(parameterSet.get<std::string>("referenceData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("referenceData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedReferenceX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("referenceData") << "' does not have the correct size!");
SolutionType referenceX(embeddedReferenceX.size());
for (size_t i=0; i<referenceX.size(); i++)
referenceX[i] = TargetSpace(embeddedReferenceX[i]);
// The reference solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> referenceSolution(referenceFEBasis, referenceX);
/////////////////////////////////////////////////////////////////
// Measure the discretization error
/////////////////////////////////////////////////////////////////

Sander, Oliver
committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
HierarchicSearch<typename GridView::Grid,typename GridView::IndexSet> hierarchicSearch(gridView.grid(), gridView.indexSet());
if (std::is_same<TargetSpace,RigidBodyMotion<double,3> >::value)
{
double deformationL2ErrorSquared = 0;
double orientationL2ErrorSquared = 0;
double deformationH1ErrorSquared = 0;
double orientationH1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
{
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
auto diff = referenceSolution(rElement, qp.position()) - numericalSolution(element, localPos);
assert(diff.size()==7);
for (int i=0; i<3; i++)
deformationL2ErrorSquared += integrationElement * qp.weight() * diff[i] * diff[i];
for (int i=3; i<7; i++)
orientationL2ErrorSquared += integrationElement * qp.weight() * diff[i] * diff[i];
auto derDiff = referenceSolution.derivative(rElement, qp.position()) - numericalSolution.derivative(element, localPos);
for (int i=0; i<3; i++)
deformationH1ErrorSquared += integrationElement * qp.weight() * derDiff[i].two_norm2();
for (int i=3; i<7; i++)
orientationH1ErrorSquared += integrationElement * qp.weight() * derDiff[i].two_norm2();
}
}
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error deformation: " << std::sqrt(deformationL2ErrorSquared)
<< " "
<< "L^2 error orientation: " << std::sqrt(orientationL2ErrorSquared)
<< " "
<< "H^1 error deformation: " << std::sqrt(deformationH1ErrorSquared)
<< " "
<< "H^1 error orientation: " << std::sqrt(orientationH1ErrorSquared)
<< std::endl;
}
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
if constexpr (std::is_same<TargetSpace,Rotation<double,3> >::value)
{
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
{
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
FieldMatrix<double,3,3> referenceValue, numericalValue;
auto refValue = referenceSolution(rElement, qp.position());
Rotation<double,3> referenceRotation(refValue);
referenceRotation.matrix(referenceValue);
auto numValue = numericalSolution(element, localPos);
Rotation<double,3> numericalRotation(numValue);
numericalRotation.matrix(numericalValue);
auto diff = referenceValue - numericalValue;
l2ErrorSquared += integrationElement * qp.weight() * diff.frobenius_norm2();
auto referenceDerQuat = referenceSolution.derivative(rElement, qp.position());
auto numericalDerQuat = numericalSolution.derivative(element, localPos);
// Transform to matrix coordinates
Tensor3<double,3,3,4> derivativeQuaternionToMatrixRef = Rotation<double,3>::derivativeOfQuaternionToMatrix(refValue);
Tensor3<double,3,3,4> derivativeQuaternionToMatrixNum = Rotation<double,3>::derivativeOfQuaternionToMatrix(numValue);
Tensor3<double,3,3,dim> refDerivative(0);
Tensor3<double,3,3,dim> numDerivative(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<dim; k++)
for (int l=0; l<4; l++)
{
refDerivative[i][j][k] = derivativeQuaternionToMatrixRef[i][j][l] * referenceDerQuat[l][k];
numDerivative[i][j][k] = derivativeQuaternionToMatrixNum[i][j][l] * numericalDerQuat[l][k];
}
auto derDiff = refDerivative - numDerivative; // compute the difference
h1ErrorSquared += derDiff.frobenius_norm2() * qp.weight() * integrationElement;
}
}
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " "
<< "h^1 error: " << std::sqrt(h1ErrorSquared)
<< std::endl;
}
else
{
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());

Sander, Oliver
committed
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
auto diff = referenceSolution(rElement, qp.position()) - numericalSolution(element, localPos);
l2ErrorSquared += integrationElement * qp.weight() * diff.two_norm2();
auto derDiff = referenceSolution.derivative(rElement, qp.position()) - numericalSolution.derivative(element, localPos);
h1ErrorSquared += integrationElement * qp.weight() * derDiff.frobenius_norm2();
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " "
<< "h^1 error: " << std::sqrt(h1ErrorSquared)
}

Sander, Oliver
committed
template <class GridView, int order, class TargetSpace>
void measureAnalyticalEOC(const GridView gridView,
const ParameterTree& parameterSet)
{
typedef std::vector<TargetSpace> SolutionType;

Sander, Oliver
committed
//////////////////////////////////////////////////////////////////////////////////
// Construct the scalar function space bases corresponding to the GFE space
//////////////////////////////////////////////////////////////////////////////////

Sander, Oliver
committed
typedef Dune::Functions::LagrangeBasis<GridView, order> FEBasis;
//////////////////////////////////////////////////////////////////////////////////
// Read the data whose error is to be measured
//////////////////////////////////////////////////////////////////////////////////
typedef BlockVector<typename TargetSpace::CoordinateType> EmbeddedVectorType;
EmbeddedVectorType embeddedX(feBasis.size());
std::ifstream inFile(parameterSet.get<std::string>("simulationData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("simulationData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("simulationData") << "' does not have the correct size!");
SolutionType x(embeddedX.size());
for (size_t i=0; i<x.size(); i++)
x[i] = TargetSpace(embeddedX[i]);
/////////////////////////////////////////////////////////////////
// Measure the discretization error
/////////////////////////////////////////////////////////////////
// Read reference solution and its derivative into a PythonFunction
typedef VirtualDifferentiableFunction<FieldVector<double, dim>, typename TargetSpace::CoordinateType> FBase;
Python::Module module = Python::import(parameterSet.get<std::string>("referenceSolution"));
auto referenceSolution = module.get("fdf").toC<std::shared_ptr<FBase>>();
// The numerical solution, as a grid function
std::unique_ptr<VirtualGridViewFunction<GridView, typename TargetSpace::CoordinateType> > numericalSolution;
if (parameterSet["interpolationMethod"] == "geodesic")
numericalSolution = std::make_unique<GFE::EmbeddedGlobalGFEFunction<FEBasis,
LocalGeodesicFEFunction<dim, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace>,
TargetSpace> > (feBasis, x);
if (parameterSet["interpolationMethod"] == "projected")
numericalSolution = std::make_unique<GFE::EmbeddedGlobalGFEFunction<FEBasis,
GFE::LocalProjectedFEFunction<dim, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace>,
TargetSpace> > (feBasis, x);
// QuadratureRule for the integral of the L^2 error
QuadratureRuleKey quadKey(dim,6);
// Compute errors in the L2 norm and the h1 seminorm.
// SO(3)-valued maps need special treatment, because they are stored as quaternions,
// but the errors need to be computed in matrix space.
if constexpr (std::is_same<TargetSpace,Rotation<double,3> >::value)
{
constexpr int blocksize = TargetSpace::CoordinateType::dimension;
// The error to be computed
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
for (auto&& element : elements(gridView))
{
// Get quadrature formula
quadKey.setGeometryType(element.type());
const auto& quad = QuadratureRuleCache<double, dim>::rule(quadKey);
for (auto quadPoint : quad)
{
auto quadPos = quadPoint.position();
const auto integrationElement = element.geometry().integrationElement(quadPos);
const auto weight = quadPoint.weight();
// Evaluate function a
FieldVector<double,blocksize> numValue;
numericalSolution.get()->evaluateLocal(element, quadPos,numValue);
// Evaluate function b. If it is a grid function use that to speed up the evaluation
FieldVector<double,blocksize> refValue;
if (std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution))
std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution)->evaluateLocal(element,
quadPos,
refValue
);
else
referenceSolution->evaluate(element.geometry().global(quadPos), refValue);
// Get error in matrix space
Rotation<double,3> numRotation(numValue);
FieldMatrix<double,3,3> numValueMatrix;
numRotation.matrix(numValueMatrix);
Rotation<double,3> refRotation(refValue);
FieldMatrix<double,3,3> refValueMatrix;
refRotation.matrix(refValueMatrix);
// Evaluate derivatives in quaternion space
FieldMatrix<double,blocksize,dim> num_di;
FieldMatrix<double,blocksize,dim> ref_di;
if (dynamic_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >*>(numericalSolution.get()))
dynamic_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >*>(numericalSolution.get())->evaluateDerivativeLocal(element,
quadPos,
num_di);
else
numericalSolution->evaluateDerivative(element.geometry().global(quadPos), num_di);
if (std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution))
std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution)->evaluateDerivativeLocal(element,
quadPos,
ref_di);
else
referenceSolution->evaluateDerivative(element.geometry().global(quadPos), ref_di);
// Transform into matrix space
Tensor3<double,3,3,4> derivativeQuaternionToMatrixNum = Rotation<double,3>::derivativeOfQuaternionToMatrix(numValue);
Tensor3<double,3,3,4> derivativeQuaternionToMatrixRef = Rotation<double,3>::derivativeOfQuaternionToMatrix(refValue);
Tensor3<double,3,3,dim> numDerivative(0);
Tensor3<double,3,3,dim> refDerivative(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<dim; k++)
for (int l=0; l<blocksize; l++)
{
numDerivative[i][j][k] = derivativeQuaternionToMatrixNum[i][j][l] * num_di[l][k];
refDerivative[i][j][k] = derivativeQuaternionToMatrixRef[i][j][l] * ref_di[l][k];
}
// integrate error
l2ErrorSquared += (numValueMatrix - refValueMatrix).frobenius_norm2() * weight * integrationElement;
auto diff = numDerivative - refDerivative;
h1ErrorSquared += diff.frobenius_norm2() * weight * integrationElement;
}
}
std::cout << "elements: " << gridView.size(0)
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " ";
std::cout << "h^1 error: " << std::sqrt(h1ErrorSquared) << std::endl;
}
else
{
auto l2Error = DiscretizationError<GridView>::computeL2Error(numericalSolution.get(),
referenceSolution.get(),
quadKey);
auto h1Error = DiscretizationError<GridView>::computeH1HalfNormDifferenceSquared(gridView,
numericalSolution.get(),
referenceSolution.get(),
quadKey);
std::cout << "elements: " << gridView.size(0)
<< " "
<< "L^2 error: " << l2Error
<< " ";
std::cout << "h^1 error: " << std::sqrt(h1Error) << std::endl;
}
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
template <class GridType, class TargetSpace>
void measureEOC(const std::shared_ptr<GridType> grid,
const std::shared_ptr<GridType> referenceGrid,
const ParameterTree& parameterSet)
{
const int order = parameterSet.get<int>("order");
if (parameterSet.get<std::string>("discretizationErrorMode")=="discrete")
{
switch (order)
{
case 1:
measureDiscreteEOC<typename GridType::LeafGridView,1,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
case 2:
measureDiscreteEOC<typename GridType::LeafGridView,2,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
case 3:
measureDiscreteEOC<typename GridType::LeafGridView,3,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
default:
DUNE_THROW(NotImplemented, "Order '" << order << "' is not implemented");
}
return; // Success
}
if (parameterSet.get<std::string>("discretizationErrorMode")=="analytical")
{
switch (order)
{
case 1:
measureAnalyticalEOC<typename GridType::LeafGridView,1,TargetSpace>(grid->leafGridView(), parameterSet);
break;
case 2:
measureAnalyticalEOC<typename GridType::LeafGridView,2,TargetSpace>(grid->leafGridView(), parameterSet);
break;
case 3:
measureAnalyticalEOC<typename GridType::LeafGridView,3,TargetSpace>(grid->leafGridView(), parameterSet);
break;
default:
DUNE_THROW(NotImplemented, "Order '" << order << "' is not implemented");
}
return; // Success
DUNE_THROW(NotImplemented, "Unknown discretization error mode encountered!");
int main (int argc, char *argv[]) try
{
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// Start Python interpreter
Python::start();
Python::Reference main = Python::import("__main__");
Python::run("import math");
Python::runStream()
<< std::endl << "import sys"
<< std::endl << "sys.path.append('/home/sander/dune/dune-gfe/problems')"
<< std::endl;
// parse data file
ParameterTree parameterSet;
if (argc < 2)
DUNE_THROW(Exception, "Usage: ./compute-disc-error <parameter file>");
ParameterTreeParser::readINITree(argv[1], parameterSet);
ParameterTreeParser::readOptions(argc, argv, parameterSet);
// Print all parameters, to have them in the log file
parameterSet.report();
/////////////////////////////////////////
// Create the grids
/////////////////////////////////////////
typedef UGGrid<dim> GridType;
const int numLevels = parameterSet.get<int>("numLevels");
shared_ptr<GridType> grid, referenceGrid;
FieldVector<double,dimworld> lower(0), upper(1);
std::string structuredGridType = parameterSet["structuredGrid"];
if (structuredGridType != "false" )
{
lower = parameterSet.get<FieldVector<double,dimworld> >("lower");
upper = parameterSet.get<FieldVector<double,dimworld> >("upper");
auto elements = parameterSet.get<std::array<unsigned int,dim> >("elements");
if (structuredGridType == "simplex")
grid = StructuredGridFactory<GridType>::createSimplexGrid(lower, upper, elements);
else if (structuredGridType == "cube")
grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
else
DUNE_THROW(Exception, "Unknown structured grid type '" << structuredGridType << "' found!");
}
else
{
std::string path = parameterSet.get<std::string>("path");
std::string gridFile = parameterSet.get<std::string>("gridFile");
grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
referenceGrid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
}
grid->globalRefine(numLevels-1);
referenceGrid->globalRefine(parameterSet.get<int>("numReferenceLevels")-1);
// Do the actual measurement
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
const int targetDim = parameterSet.get<int>("targetDim");
const std::string targetSpace = parameterSet.get<std::string>("targetSpace");
switch (targetDim)
{
case 1:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,1> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,1> >(grid,
referenceGrid,
parameterSet);
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
case 2:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,2> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,2> >(grid,
referenceGrid,
parameterSet);
#if 0
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,2> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,2> >(grid,
referenceGrid,
parameterSet);
#endif
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
case 3:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,3> >(grid,
referenceGrid,
parameterSet);
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
case 4:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,4> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,4> >(grid,
referenceGrid,
parameterSet);
#if 0
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,4> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,4> >(grid,
referenceGrid,
parameterSet);
#endif
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
default:
DUNE_THROW(NotImplemented, "Target dimension '" << targetDim << "' is not implemented");
}
{
std::cout << e << std::endl;
return 1;
}