Skip to content
Snippets Groups Projects
quaternion.hh 7.26 KiB
Newer Older
  • Learn to ignore specific revisions
  • Oliver Sander's avatar
    Oliver Sander committed
    #ifndef QUATERNION_HH
    #define QUATERNION_HH
    
    #include <dune/common/fvector.hh>
    #include <dune/common/exceptions.hh>
    
    template <class T>
    class Quaternion : public Dune::FieldVector<T,4>
    {
    public:
    
    
        /** \brief Default constructor */
    
    Oliver Sander's avatar
    Oliver Sander committed
        Quaternion() {}
    
        /** \brief Constructor with the four components */
        Quaternion(const T& a, const T& b, const T& c, const T& d) {
    
            (*this)[0] = a;
            (*this)[1] = b;
            (*this)[2] = c;
            (*this)[3] = d;
        
        }
    
    
        /** \brief Copy constructor */
    
    Oliver Sander's avatar
    Oliver Sander committed
        Quaternion(const Dune::FieldVector<T,4>& other) : Dune::FieldVector<T,4>(other) {}
    
    
        /** \brief Constructor with rotation axis and angle */
        Quaternion(Dune::FieldVector<T,3> axis, T angle) {
            axis /= axis.two_norm();
            axis *= std::sin(angle/2);
            (*this)[0] = axis[0];
            (*this)[1] = axis[1];
            (*this)[2] = axis[2];
            (*this)[3] = std::cos(angle/2);
        }
    
    
        /** \brief Return the identity element */
        static Quaternion<T> identity() {
            Quaternion<T> id;
            id[0] = 0;
            id[1] = 0;
            id[2] = 0;
            id[3] = 1;
            return id;
        }
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
         */
        static Quaternion<T> exp(const T& v0, const T& v1, const T& v2) {
            Quaternion<T> q;
    
            T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2);
    
            // Stabilization for small |v| due to Grassia
    
            T sin   = (normV < 1e-4) ? 0.5 * (normV*normV/48) : std::sin(normV/2)/normV;
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    
    Oliver Sander's avatar
    Oliver Sander committed
            // if normV == 0 then q = (0,0,0,1)
    
            assert(!isnan(sin));
    
    Oliver Sander's avatar
    Oliver Sander committed
            q[0] = sin * v0;
            q[1] = sin * v1;
            q[2] = sin * v2;
            q[3] = std::cos(normV/2);
    
            return q;
        }
    
        /** \brief Right quaternion multiplication */
    
    Oliver Sander's avatar
    Oliver Sander committed
        Quaternion<T> mult(const Quaternion<T>& other) const {
    
    Oliver Sander's avatar
    Oliver Sander committed
            Quaternion<T> q;
            q[0] =   (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
            q[1] =   (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
            q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
            q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
    
            return q;
        }
        /** \brief Return the tripel of director vectors represented by a unit quaternion
    
        The formulas are taken from Dichmann, Li, Maddocks, (2.6.4), (2.6.5), (2.6.6)
        */
        Dune::FieldVector<T,3> director(int i) const {
            
            Dune::FieldVector<T,3> d;
            const Dune::FieldVector<T,4>& q = *this;   // simpler notation
    
            if (i==0) {
                d[0] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
                d[1] = 2 * (q[0]*q[1] + q[2]*q[3]);
                d[2] = 2 * (q[0]*q[2] - q[1]*q[3]);
            } else if (i==1) {
                d[0] = 2 * (q[0]*q[1] - q[2]*q[3]);
                d[1] = -q[0]*q[0] + q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
                d[2] = 2 * (q[1]*q[2] + q[0]*q[3]);
            } else if (i==2) {
                d[0] = 2 * (q[0]*q[2] + q[1]*q[3]);
                d[1] = 2 * (q[1]*q[2] - q[0]*q[3]);
                d[2] = -q[0]*q[0] - q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
            } else
                DUNE_THROW(Dune::Exception, "Nonexisting director " << i << " requested!");
    
            return d;
        }
                
        /** \brief Turn quaternion into a unit quaternion by dividing by its Euclidean norm */
        void normalize() {
            (*this) /= this->two_norm();
        }
    
    
        Dune::FieldVector<double,3> rotate(const Dune::FieldVector<double,3>& v) const {
    
            Dune::FieldVector<double,3> result;
            Dune::FieldVector<double,3> d0 = director(0);
            Dune::FieldVector<double,3> d1 = director(1);
            Dune::FieldVector<double,3> d2 = director(2);
    
            for (int i=0; i<3; i++)
                result[i] = v[0]*d0[i] + v[1]*d1[i] + v[2]*d2[i];
    
            return result;
        }
    
        /** \brief Interpolate between two rotations */
        static Quaternion<T> interpolate(const Quaternion<T>& a, const Quaternion<T>& b, double omega) {
    
            Quaternion<T> result;
    
            for (int i=0; i<4; i++)
                result[i] = a[i]*(1-omega) + b[i]*omega;
    
            result.normalize();
    
            return result;
        }
    
    
        /** \brief Return the corresponding orthogonal matrix */
        void matrix(Dune::FieldMatrix<T,3,3>& m) const {
    
            m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
            m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
    
            m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
            m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
    
            m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
            m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
            m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
    
        }
    
        /** \brief Set unit quaternion from orthogonal matrix 
    
        We tacitly assume that the matrix really is orthogonal */
        void set(const Dune::FieldMatrix<T,3,3>& m) {
    
            // Easier writing
            Dune::FieldVector<T,4>& p = (*this);
            // The following equations for the derivation of a unit quaternion from a rotation
            // matrix comes from 'E. Salamin, Application of Quaternions to Computation with
            // Rotations, Technical Report, Stanford, 1974'
    
            p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
            p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
            p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
            p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
    
            // avoid rounding problems
            if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
    
                p[0] = std::sqrt(p[0]);
    
                // r_x r_y = (R_12 + R_21) / 4
                p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
    
                // r_x r_z = (R_13 + R_31) / 4
                p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
    
                // r_0 r_x = (R_32 - R_23) / 4
                p[3] = (m[2][1] - m[1][2]) / 4 / p[0]; 
    
            } else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
    
                p[1] = std::sqrt(p[1]);
    
                // r_x r_y = (R_12 + R_21) / 4
                p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
    
                // r_y r_z = (R_23 + R_32) / 4
                p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
    
                // r_0 r_y = (R_13 - R_31) / 4
                p[3] = (m[0][2] - m[2][0]) / 4 / p[1]; 
    
            } else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
    
                p[2] = std::sqrt(p[2]);
    
                // r_x r_z = (R_13 + R_31) / 4
                p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
    
                // r_y r_z = (R_23 + R_32) / 4
                p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
    
                // r_0 r_z = (R_21 - R_12) / 4
                p[3] = (m[1][0] - m[0][1]) / 4 / p[2]; 
    
            } else {
    
                p[3] = std::sqrt(p[3]);
    
                // r_0 r_x = (R_32 - R_23) / 4
                p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
    
                // r_0 r_y = (R_13 - R_31) / 4
                p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
    
                // r_0 r_z = (R_21 - R_12) / 4
                p[2] = (m[1][0] - m[0][1]) / 4 / p[3]; 
    
            }
    
        }
    
    Oliver Sander's avatar
    Oliver Sander committed
    };
    
    #endif