-
Sander, Oliver authored
The ProductManifold class generalizes RigidBodyMotion, and can do everything that the RigidBodyMotion class can. Therefore there is no point in keeping RigidBodyMotion any longer. Having two implementations for the same thing will just confuse people.
Sander, Oliver authoredThe ProductManifold class generalizes RigidBodyMotion, and can do everything that the RigidBodyMotion class can. Therefore there is no point in keeping RigidBodyMotion any longer. Having two implementations for the same thing will just confuse people.
localprojectedfefunctiontest.cc 10.13 KiB
#include <config.h>
#include <fenv.h>
#include <iostream>
#include <iomanip>
#include <dune/common/fvector.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/localfunctions/lagrange/lagrangelfecache.hh>
#include <dune/gfe/spaces/productmanifold.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/spaces/rotation.hh>
#include <dune/gfe/spaces/unitvector.hh>
#include <dune/gfe/localprojectedfefunction.hh>
#include "multiindex.hh"
#include "valuefactory.hh"
const double eps = 1e-6;
using namespace Dune;
/** \brief Computes the diameter of a set */
template <class TargetSpace>
double diameter(const std::vector<TargetSpace>& v)
{
double d = 0;
for (size_t i=0; i<v.size(); i++)
for (size_t j=0; j<v.size(); j++)
d = std::max(d, TargetSpace::distance(v[i],v[j]));
return d;
}
template <int dim, class ctype, class LocalFunction>
auto
evaluateDerivativeFD(const LocalFunction& f, const Dune::FieldVector<ctype, dim>& local)
-> decltype(f.evaluateDerivative(local))
{
double eps = 1e-8;
static const int embeddedDim = LocalFunction::TargetSpace::embeddedDim;
Dune::FieldMatrix<ctype, embeddedDim, dim> result;
for (int i=0; i<dim; i++) {
Dune::FieldVector<ctype, dim> forward = local;
Dune::FieldVector<ctype, dim> backward = local;
forward[i] += eps;
backward[i] -= eps;
auto fdDer = f.evaluate(forward).globalCoordinates() - f.evaluate(backward).globalCoordinates();
fdDer /= 2*eps;
for (int j=0; j<embeddedDim; j++)
result[j][i] = fdDer[j];
}
return result;
}
template <int domainDim, int dim>
void testDerivativeTangentiality(const RealTuple<double,dim>& x,
const FieldMatrix<double,dim,domainDim>& derivative)
{
// By construction, derivatives of RealTuples are always tangent
}
// the columns of the derivative must be tangential to the manifold
template <int domainDim, int vectorDim>
void testDerivativeTangentiality(const UnitVector<double,vectorDim>& x,
const FieldMatrix<double,vectorDim,domainDim>& derivative)
{
for (int i=0; i<domainDim; i++) {
// The i-th column is a tangent vector if its scalar product with the global coordinates
// of x vanishes.
double sp = 0;
for (int j=0; j<vectorDim; j++)
sp += x.globalCoordinates()[j] * derivative[j][i];
if (std::fabs(sp) > 1e-8)
DUNE_THROW(Dune::Exception, "Derivative is not tangential: Column: " << i << ", product: " << sp);
}
}
// the columns of the derivative must be tangential to the manifold
template <int domainDim, int vectorDim>
void testDerivativeTangentiality(const Rotation<double,vectorDim-1>& x,
const FieldMatrix<double,vectorDim,domainDim>& derivative)
{}
// the columns of the derivative must be tangential to the manifold
template <int domainDim, int vectorDim,typename ... TargetSpaces>
void testDerivativeTangentiality(const Dune::GFE::ProductManifold<TargetSpaces...>& x,
const FieldMatrix<double,vectorDim,domainDim>& derivative)
{
size_t posHelper=0;
using namespace Dune::Hybrid;
forEach(integralRange(Dune::Hybrid::size(x)), [&](auto&& i) {
using Manifold = std::remove_reference_t<decltype(x[i])>;
testDerivativeTangentiality(x[i],Dune::GFE::blockAt<Manifold::embeddedDim,domainDim>( derivative,posHelper,0));
posHelper +=Manifold::embeddedDim;
});
}
/** \brief Test whether interpolation is invariant under permutation of the simplex vertices
* \todo Implement this for all dimensions
*/
template <int domainDim, class TargetSpace>
void testPermutationInvariance(const std::vector<TargetSpace>& corners)
{
// works only for 2d domains
if (domainDim!=2)
return;
LagrangeLocalFiniteElementCache<double,double,domainDim,1> feCache;
typedef typename LagrangeLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType LocalFiniteElement;
GeometryType simplex = GeometryTypes::simplex(domainDim);
//
std::vector<TargetSpace> cornersRotated1(domainDim+1);
std::vector<TargetSpace> cornersRotated2(domainDim+1);
cornersRotated1[0] = cornersRotated2[2] = corners[1];
cornersRotated1[1] = cornersRotated2[0] = corners[2];
cornersRotated1[2] = cornersRotated2[1] = corners[0];
GFE::LocalProjectedFEFunction<2,double,LocalFiniteElement,TargetSpace> f0(feCache.get(simplex), corners);
GFE::LocalProjectedFEFunction<2,double,LocalFiniteElement,TargetSpace> f1(feCache.get(simplex), cornersRotated1);
GFE::LocalProjectedFEFunction<2,double,LocalFiniteElement,TargetSpace> f2(feCache.get(simplex), cornersRotated2);
// A quadrature rule as a set of test points
int quadOrder = 3;
const Dune::QuadratureRule<double, domainDim>& quad
= Dune::QuadratureRules<double, domainDim>::rule(simplex, quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position();
Dune::FieldVector<double,domainDim> l0 = quadPos;
Dune::FieldVector<double,domainDim> l1, l2;
l1[0] = quadPos[1];
l1[1] = 1-quadPos[0]-quadPos[1];
l2[0] = 1-quadPos[0]-quadPos[1];
l2[1] = quadPos[0];
// evaluate the three functions
TargetSpace v0 = f0.evaluate(l0);
TargetSpace v1 = f1.evaluate(l1);
TargetSpace v2 = f2.evaluate(l2);
// Check that they are all equal
assert(TargetSpace::distance(v0,v1) < eps);
assert(TargetSpace::distance(v0,v2) < eps);
}
}
template <int domainDim, class TargetSpace, bool conforming=true>
void testDerivative(const GFE::LocalProjectedFEFunction<domainDim,double,typename LagrangeLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType, TargetSpace, conforming>& f)
{
static const int embeddedDim = TargetSpace::EmbeddedTangentVector::dimension;
// A quadrature rule as a set of test points
int quadOrder = 3;
const auto& quad = Dune::QuadratureRules<double, domainDim>::rule(f.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position();
// evaluate actual derivative
Dune::FieldMatrix<double, embeddedDim, domainDim> derivative = f.evaluateDerivative(quadPos);
// evaluate fd approximation of derivative
Dune::FieldMatrix<double, embeddedDim, domainDim> fdDerivative = evaluateDerivativeFD(f,quadPos);
Dune::FieldMatrix<double, embeddedDim, domainDim> diff = derivative;
diff -= fdDerivative;
if ( diff.infinity_norm() > 100*eps ) {
std::cout << className<TargetSpace>() << ": Analytical gradient does not match fd approximation." << std::endl;
std::cout << "Analytical: " << derivative << std::endl;
std::cout << "FD : " << fdDerivative << std::endl;
assert(false);
}
if(conforming)
testDerivativeTangentiality(f.evaluate(quadPos), derivative);
}
}
template <class TargetSpace, int domainDim>
void test(const GeometryType& element)
{
std::cout << " --- Testing " << className<TargetSpace>() << ", domain dimension: " << element.dim() << " ---" << std::endl;
std::vector<TargetSpace> testPoints;
ValueFactory<TargetSpace>::get(testPoints);
int nTestPoints = testPoints.size();
size_t nVertices = Dune::ReferenceElements<double,domainDim>::general(element).size(domainDim);
// Set up elements of the target space
std::vector<TargetSpace> corners(nVertices);
MultiIndex index(nVertices, nTestPoints);
int numIndices = index.cycle();
for (int i=0; i<numIndices; i++, ++index) {
for (size_t j=0; j<nVertices; j++)
corners[j] = testPoints[index[j]];
if (diameter(corners) > 0.5*M_PI)
continue;
// Make local gfe function to be tested
LagrangeLocalFiniteElementCache<double,double,domainDim,1> feCache;
typedef typename LagrangeLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType LocalFiniteElement;
GFE::LocalProjectedFEFunction<domainDim,double,LocalFiniteElement,TargetSpace> f(feCache.get(element),corners);
GFE::LocalProjectedFEFunction<domainDim, double, LocalFiniteElement, TargetSpace,false> f_nonconforming(feCache.get(element), corners);
//testPermutationInvariance(corners);
testDerivative<domainDim>(f);
testDerivative<domainDim>(f_nonconforming);
}
}
int main()
{
// choke on NaN -- don't enable this by default, as there are
// a few harmless NaN in the loopsolver
//feenableexcept(FE_INVALID);
std::cout << std::setw(15) << std::setprecision(12);
////////////////////////////////////////////////////////////////
// Test functions on 1d elements
////////////////////////////////////////////////////////////////
test<RealTuple<double,1>,1>(GeometryTypes::line);
test<UnitVector<double,2>,1>(GeometryTypes::line);
test<UnitVector<double,3>,1>(GeometryTypes::line);
test<Rotation<double,3>,1>(GeometryTypes::line);
typedef Dune::GFE::ProductManifold<RealTuple<double,1>,Rotation<double,3>,UnitVector<double,2> > CrazyManifold;
test<CrazyManifold, 1>(GeometryTypes::line);
////////////////////////////////////////////////////////////////
// Test functions on 2d simplex elements
////////////////////////////////////////////////////////////////
test<RealTuple<double,1>,2>(GeometryTypes::triangle);
test<UnitVector<double,2>,2>(GeometryTypes::triangle);
test<RealTuple<double,3>,2>(GeometryTypes::triangle);
test<UnitVector<double,3>,2>(GeometryTypes::triangle);
test<Rotation<double,3>,2>(GeometryTypes::triangle);
typedef Dune::GFE::ProductManifold<RealTuple<double,1>,Rotation<double,3>,UnitVector<double,2> > CrazyManifold;
test<CrazyManifold, 2>(GeometryTypes::triangle);
////////////////////////////////////////////////////////////////
// Test functions on 2d quadrilateral elements
////////////////////////////////////////////////////////////////
test<RealTuple<double,1>,2>(GeometryTypes::quadrilateral);
test<UnitVector<double,2>,2>(GeometryTypes::quadrilateral);
test<UnitVector<double,3>,2>(GeometryTypes::quadrilateral);
test<Rotation<double,3>,2>(GeometryTypes::quadrilateral);
typedef Dune::GFE::ProductManifold<RealTuple<double,1>,Rotation<double,3>,UnitVector<double,2> > CrazyManifold;
test<CrazyManifold, 2>(GeometryTypes::quadrilateral);
}