Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import math
import os
import subprocess
import fileinput
import re
import matlab.engine
import sys
# from ClassifyMin import *
from ClassifyMin_New import *
# from CellScript import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
from vtk.util import numpy_support
from pyevtk.hl import gridToVTK
from chart_studio import plotly
import plotly.graph_objs as go
import mayavi.mlab as mlab
from mayavi.api import OffScreenEngine
import scipy.signal
import matplotlib as mpl
from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator
import pandas as pd
import seaborn as sns
import matplotlib.colors as mcolors
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
# print(sys.executable)
# --------------------------------------------------------------------
# START :
# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1
#
# -Option 1 : (Case lambda = 0 => q12 = 0)
# compute q1,q2,b1,b2 from Formula
# Option 1.1 :
# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty})
# Option 1.2 :
# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem)
# -Option 2 :
# compute Q_hom & B_eff by running 'Cell-Problem'
#
# -> CLASSIFY ...
#
# OUTPUT: Minimizer G, angle , type, curvature
# -----------------------------------------------------------------------
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#
#
# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset",
# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ):
# # ------------------------------------ get mu_gamma ------------------------------
# # ---Scenario 1.1: extreme regimes
# if gamma == '0':
# print('extreme regime: gamma = 0')
# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
# print("mu_gamma:", mu_gamma)
# elif gamma == 'infinity':
# print('extreme regime: gamma = infinity')
# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1
# print("mu_gamma:", mu_gamma)
# else:
# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# # print("Run computeMuGamma for Gamma = ", gamma)
# with open(InputFilePath, 'r') as file:
# filedata = file.read()
# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
# f = open(InputFilePath,'w')
# f.write(filedata)
# f.close()
# # --- Run Cell-Problem
#
# # Check Time
# # t = time.time()
# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Cell-Problem_muGama -> faster
# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Compute_muGamma (2D Problem much much faster)
#
# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
# capture_output=True, text=True)
# # print('elapsed time:', time.time() - t)
#
# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
# with open(OutputFilePath, 'r') as file:
# output = file.read()
# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
# mu_gamma = float(s[0])
# # print("mu_gamma:", mu_gammaValue)
# # --------------------------------------------------------------------------------------
# return mu_gamma
#
# InputFile = "/inputs/cellsolver.parset"
# OutputFile = "/outputs/output.txt"
InputFile = "/inputs/computeMuGamma.parset"
OutputFile = "/outputs/outputMuGamma.txt"
# --------- Run from src folder:
path_parent = os.path.dirname(os.getcwd())
os.chdir(path_parent)
path = os.getcwd()
print(path)
InputFilePath = os.getcwd()+InputFile
OutputFilePath = os.getcwd()+OutputFile
print("InputFilepath: ", InputFilePath)
print("OutputFilepath: ", OutputFilePath)
print("Path: ", path)
# -------------------------- Input Parameters --------------------
# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma
mu1 = 1.0
rho1 = 1.0
alpha = 2.0
theta = 1.0/4.0
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
gamma = '0'
print('---- Input parameters: -----')
print('mu1: ', mu1)
print('rho1: ', rho1)
print('alpha: ', alpha)
print('beta: ', beta)
print('theta: ', theta)
print('gamma:', gamma)
print('----------------------------')
# ----------------------------------------------------------------
# # gamma_min = 1
# # gamma_max = 1
# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3)
# # #
# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta...
# print('(Input) Gamma_Values:', Gamma_Values)

Klaus Böhnlein
committed
print('type of gamma:', type(gamma))
# # #
print('(Input) Gamma_Values:', Gamma_Values)
for gamma in Gamma_Values:
print('Run for gamma = ', gamma)
print('type of gamma:', type(gamma))
# muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath)
# # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1)
# print('Test MuGamma:', muGamma)
# ------- Options --------
# print_Cases = True
# print_Output = True
#TODO
# generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case)
generalCase = False
make_3D_plot = True
make_3D_PhaseDiagram = True
make_2D_plot = False
make_2D_PhaseDiagram = False
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#
# --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 ---
# q1 = harmonicMean(mu1, beta, theta)
# q2 = arithmeticMean(mu1, beta, theta)
# --- Set q12
# q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output
# b1 = prestrain_b1(rho1, beta, alpha, theta)
# b2 = prestrain_b2(rho1, beta, alpha, theta)
#
# print('---- Input parameters: -----')
# print('mu1: ', mu1)
# print('rho1: ', rho1)
# print('alpha: ', alpha)
# print('beta: ', beta)
# print('theta: ', theta)
# print("q1: ", q1)
# print("q2: ", q2)
# print("mu_gamma: ", mu_gamma)
# print("q12: ", q12)
# print("b1: ", b1)
# print("b2: ", b2)
# print('----------------------------')
# print("machine epsilon", sys.float_info.epsilon)
# G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output)
# Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2)
# print("Test", Test)
# ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------
# SamplePoints_3D = 10 # Number of sample points in each direction
# SamplePoints_2D = 10 # Number of sample points in each direction
# SamplePoints_3D = 300 # Number of sample points in each direction
# SamplePoints_3D = 150 # Number of sample points in each direction
SamplePoints_3D = 100 # Number of sample points in each direction
# # SamplePoints_3D = 50 # Number of sample points in each direction
# SamplePoints_3D = 25 # Number of sample points in each direction
# SamplePoints_3D = 200 # Number of sample points in each direction
# SamplePoints_3D = 400 # Number of sample points in each direction
# SamplePoints_2D = 7500 # Number of sample points in each direction
# SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction
# SamplePoints_2D = 400 # 4000 # Number of sample points in each direction
# SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction
# SamplePoints_3D = 10 # Number of sample points in each direction
print('NUMBER OF POINTS USED(3D):', SamplePoints_3D)
if make_3D_PhaseDiagram:
alphas_ = np.linspace(-20, 20, SamplePoints_3D)
# alphas_ = np.linspace(-10, 10, SamplePoints_3D)
# betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range
# betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range
# betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part
# betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen...
thetas_ = np.linspace(0.01,0.99,SamplePoints_3D)
#TEST
alphas_ = np.linspace(-5, 15, SamplePoints_3D)
betas_ = np.linspace(1.01,20.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen...
# TEST
# alphas_ = np.linspace(-2, 2, SamplePoints_3D)
# betas_ = np.linspace(1.01,10.01,SamplePoints_3D)
# print('betas:', betas_)
# TEST :
# alphas_ = np.linspace(-40, 40, SamplePoints_3D)
# betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range
# print('type of alphas', type(alphas_))
# print('Test:', type(np.array([mu_gamma])) )
alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij')
classifyMin_anaVec = np.vectorize(classifyMin_ana)

Klaus Böhnlein
committed
# Get MuGamma values ...
GetMuGammaVec = np.vectorize(GetMuGamma)
muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1)
# Classify Minimizers....
G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!!
# G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1,True,True) # Sets q12 to zero!!!
# G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True)
# print('size of G:', G.shape)
# print('G:', G)

Klaus Böhnlein
committed
# Option to print angles
# print('angles:', angles)

Klaus Böhnlein
committed
# Out = classifyMin_anaVec(alphas,betas,thetas)
# T = Out[2]
# --- Write to VTK
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
GammaString = str(gamma)
VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString
gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} )
print('Written to VTK-File:', VTKOutputName )
if make_2D_PhaseDiagram:
# alphas_ = np.linspace(-20, 20, SamplePoints_2D)
# alphas_ = np.linspace(0, 1, SamplePoints_2D)
thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
alphas_ = np.linspace(-5, 5, SamplePoints_2D)
# alphas_ = np.linspace(-5, 15, SamplePoints_2D)
# thetas_ = np.linspace(0.05,0.25,SamplePoints_2D)
# good range:
# alphas_ = np.linspace(9, 10, SamplePoints_2D)
# thetas_ = np.linspace(0.075,0.14,SamplePoints_2D)
# range used:
# alphas_ = np.linspace(8, 10, SamplePoints_2D)
# thetas_ = np.linspace(0.05,0.16,SamplePoints_2D)
# alphas_ = np.linspace(8, 12, SamplePoints_2D)
# thetas_ = np.linspace(0.05,0.2,SamplePoints_2D)
# betas_ = np.linspace(0.01,40.01,1)
#fix to one value:
# alphas_ = np.linspace(-2, 1, SamplePoints_2D)
# thetas_ = np.linspace(0.4,0.6,SamplePoints_2D)
# betas_ = 10.0;
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# TEST
# alphas_ = np.linspace(-8, 8, SamplePoints_2D)
# thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
# betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 !
# betas_ = 0.9;
# betas_ = 0.5; #TEST!!!
alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij')
if generalCase:
classifyMin_matVec = np.vectorize(classifyMin_mat)
GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray])
Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath )
# print('type of Q:', type(Q))
# print('Q:', Q)
G, angles, Types, curvature = classifyMin_matVec(Q,B)
else:
classifyMin_anaVec = np.vectorize(classifyMin_ana)
GetMuGammaVec = np.vectorize(GetMuGamma)
muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!!
# print('size of G:', G.shape)
# print('G:', G)
# print('Types:', Types)
# Out = classifyMin_anaVec(alphas,betas,thetas)
# T = Out[2]
# --- Write to VTK
# VTKOutputName = + path + "./PhaseDiagram2DNEW"
GammaString = str(gamma)
VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString
gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} )
print('Written to VTK-File:', VTKOutputName )
# --- Make 3D Scatter plot
if(make_3D_plot or make_2D_plot):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# ax = plt.axes(projection ='3d', adjustable='box')
# fig,ax = plt.subplots(111, projection='3d')
# ax = plt.axes(projection ='3d', adjustable='box')
colors = cm.plasma(Types)
# if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat)
if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
if make_3D_plot:
width = 6.28 *0.5
# width = 6.28
# height = width / 1.618
height = width
# pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flatten())
plt.style.use("seaborn")
# plt.style.use("seaborn-paper")
# plt.style.use('ggplot')
# plt.rcParams["font.family"] = "Avenir"
# plt.rcParams["font.size"] = 16
# plt.style.use("seaborn-darkgrid")
mpl.rcParams['text.usetex'] = True
mpl.rcParams["font.family"] = "serif"
mpl.rcParams["font.size"] = "10"
# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5
# mpl.rcParams['xtick.bottom'] = True
# mpl.rcParams['ticks'] = True
mpl.rcParams['xtick.bottom'] = True
mpl.rcParams['xtick.major.size'] = 3
mpl.rcParams['xtick.minor.size'] = 1.5
mpl.rcParams['xtick.major.width'] = 0.75
mpl.rcParams['ytick.left'] = True
mpl.rcParams['ytick.major.size'] = 3
mpl.rcParams['ytick.minor.size'] = 1.5
mpl.rcParams['ytick.major.width'] = 0.75
mpl.rcParams.update({'font.size': 10})
mpl.rcParams['axes.labelpad'] = 1
angles = angles.flatten()
cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"])
cmap=mpl.cm.RdBu_r
# cmap=mpl.cm.viridis_r
# cmap=mpl.cm.bwr
# cmap=mpl.cm.coolwarm
# cmap=mpl.cm.Blues_r
# norm = mpl.colors.Normalize(vmin=5, vmax=10)
# cmap=mpl.cm.gnuplot
# cmap=mpl.cm.magma_r
# cmap=mpl.cm.inferno_r
# cmap=mpl.cm.plasma
# cmap=mpl.cm.plasma_r
# cmap=mpl.cm.cividis_r
# cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"])
# cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","orange"])
divnorm=mcolors.TwoSlopeNorm(vmin=angles.min(), vcenter=(angles.max()+angles.min())/2, vmax=angles.max())
# cmap = cm.ScalarMappable(norm=divnorm, cmap=cmap)
opacity_list = 1-angles/angles.max()
print('opacity_list', opacity_list)
print('opacity_list.max():', opacity_list.max())
# get a Nx4 array of RGBA corresponding to zs
# cmap expects values between 0 and 1
colors = cmap(angles/angles.max())
# colors = angles/angles.max()
print('colors:', colors)
### set the alpha values according to i_list
### must satisfy 0 <= i <= 1
# epsilon =0.01
opacity_list = np.array(opacity_list)
colors[:,-1] = opacity_list / opacity_list.max()
# ax.scatter(alphas,betas,thetas,c=angles.flatten())
# S = ax.scatter(alphas,betas,thetas,c=colors, cmap=cmap, norm = divnorm)
S = ax.scatter(alphas,betas,thetas,c=colors)
S_2 = ax.scatter(alphas,betas,thetas,c=angles/angles.max(), cmap=cmap, s=0) # Hack for colormap...
# ax.view_init(elev=30, azim=75)
ax.view_init(elev=25, azim=75)
# fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
# cax=ax, orientation='horizontal', label='Some Units')
# plt.colorbar(S)
# fig.colorbar(S, ax=ax)
# axins1 = inset_axes(ax,
# width="5%", # width = 5% of parent_bbox width
# height="100%", # height : 50%
# loc='lower left',
# bbox_to_anchor=(1.05, 0., 1, 1),
# bbox_transform=ax[1].transAxes,
# borderpad=0,
# )
# ax.clabel(CS2, CS2.levels, inline=True, fontsize=10)
# ax.clabel(CS, fontsize=5, colors='black')
# cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
# cbar = fig.colorbar(CS_1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
# cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
# cbar = fig.colorbar(S, cax=ax, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
# cbar = fig.colorbar(S_2, ax=ax)
# cbar = fig.colorbar(S, ax=ax)
# cbar = fig.colorbar(CS_1, cax=cbar_ax, shrink=0.2, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
# cbar = fig.colorbar(CS_1, ax=ax[:], shrink=0.8, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ])
## ADD COLORBAR:
axins = inset_axes(ax,
width="5%",
height="100%",
loc='right',
borderpad=0,
bbox_to_anchor=[0.0, 0.5]
)
cbar = fig.colorbar(S_2, cax=axins)
# cbar = fig.colorbar(S_2, orientation="horizontal", pad=0.2)
# cbar = fig.colorbar(S_2, pad=0.2)
cbar.ax.set_yticklabels([r'$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'])
cbar.ax.set_title(r'$\alpha$')
### COLORBAR :
# cbar = plt.colorbar()
# cbar.ax.tick_params(labelsize=10)
# fig.colorbar(S)
# cbar=plt.colorbar(pnt3d)
# cbar.set_label("Values (units)")
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$')
# if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat)
# if make_3D_plot: fig = go.Figure(data=[go.Surface(z=thetas, x=alphas, y=betas, color=angles.flat)])
#### PLOTLY:
# print('angles.flatten()',angles.flatten())
# fig = go.Figure(data=go.Isosurface(
# x=alphas.flatten(),
# y=betas.flatten(),
# z=thetas.flatten(),
# value=angles.flatten(),
# isomin=0,
# isomax=1.565,
# opacity=1.0,
# colorscale='agsunset',
# flatshading = True
# # caps=dict(x_show=False, y_show=False)
# ))
# fig.show()
# ----TEST SAVITZKY_GOLAY FILTER
# zhat = scipy.signal.savgol_filter(angles.flatten(), 5, 4) # window size 51, polynomial order 3
#
# fig = go.Figure(data=go.Volume(
# x=alphas.flatten(),
# y=betas.flatten(),
# z=thetas.flatten(),
# value=zhat,
# isomin=0.0,
# isomax=1.56,
# opacity=0.1, # needs to be small to see through all surfaces
# surface_count=17, # needs to be a large number for good volume rendering
# colorscale='RdBu'
# ))
# fig.show()
## --------------------------------
# alphas = np.array(alphas)
# print('alphas.shape:',np.shape(alphas))
# #### ------- MAYAVI:
# # s = angles.flatten()
# s = angles
# src = mlab.pipeline.scalar_field(s)
# mlab.pipeline.iso_surface(src, contours=[s.min()+0.1*s.ptp(), ], opacity=0.3)
# mlab.pipeline.iso_surface(src, contours=[s.max()-0.1*s.ptp(), ],)
# # mlab.outline()
# # mlab.mesh(alphas,betas,thetas)
# mlab.colorbar( orientation='vertical', nb_labels=5)
# # mlab.orientation_axes()
# mlab.show()
### ---------------
ax.set_xlabel(r'$\theta_\rho$', labelpad=2)
ax.set_ylabel(r"$\theta_\mu$", labelpad=2)
if make_3D_plot: ax.set_zlabel(r'$\theta$',labelpad=2)
fig.set_size_inches(width, height)
# fig.savefig('PhaseDiagram3D.pdf')
fig.savefig('PhaseDiagram3D.png', format='png')
# fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',bbox_extra_artists=(cbar,),
# bbox_inches='tight')
# fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',format='png',bbox_extra_artists=(cbar,),
# bbox_inches='tight')
# fig.savefig('PhaseDiagram3D', format='svg')
# fig.savefig('PhaseDiagram3D.pdf', dpi=90)
plt.show()
# fig.set_size_inches(width, height)
# fig.savefig('PhaseDiagram3D.pdf')
# plt.savefig('common_labels.png', dpi=300)
# print('T:', T)
# print('Type 1 occured here:', np.where(T == 1))
# print('Type 2 occured here:', np.where(T == 2))
# print(alphas_)
# print(betas_)
# ALTERNATIVE
# colors = ("red", "green", "blue")
# groups = ("Type 1", "Type2", "Type3")
#
# # Create plot
# fig = plt.figure()
# ax = fig.add_subplot(1, 1, 1)
#
# for data, color, group in zip(Types, colors, groups):
# # x, y = data
# ax.scatter(alphas, thetas, alpha=0.8, c=color, edgecolors='none', label=group)
#
# plt.title('Matplot scatter plot')
# plt.legend(loc=2)
# plt.show()