Skip to content
Snippets Groups Projects
Commit 26ec8c07 authored by Klaus Böhnlein's avatar Klaus Böhnlein
Browse files

Update

parent b5835d1c
No related branches found
No related tags found
No related merge requests found
......@@ -17,6 +17,11 @@ import sys
# ----------------------------------------------------------------------------------------------------------------------------
# ----- Setup Paths -----
InputFile = "/inputs/cellsolver.parset"
OutputFile = "/outputs/output.txt"
......@@ -50,14 +55,19 @@ print('----------------------------')
print('RunCellProblem...')
RunCellProblem(alpha,beta,theta,gamma,mu1,rho1,InputFilePath)
print('Read effective quantities...')
Q, B = ReadEffectiveQuantities()
print('Q:', Q)
print('B:', B)
#
# print('RunCellProblem...')
# RunCellProblem(alpha,beta,theta,gamma,mu1,rho1,InputFilePath)
# TEST:
print('Compare_Classification...')
Compare_Classification(alpha,beta,theta,gamma,mu1,rho1,InputFilePath)
# Compare symbolicMinimization with Classification 'ClassifyMin' :
# print('Compare_Classification...')
# Compare_Classification(alpha,beta,theta,gamma,mu1,rho1,InputFilePath)
......@@ -73,7 +83,7 @@ Inp = False
Inp_T = True
print('Run symbolic Minimization...')
#Arguments: symMinization(print_Input,print_statPoint,print_Output,make_FunctionPlot, InputPath)
G, angle, type, kappa = eng.symMinimization(Inp_T,Inp,Inp,Inp, nargout=4) #Name of program:symMinimization
G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp, nargout=4) #Name of program:symMinimization
# G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp,path + "/outputs", nargout=4) #Optional: add Path
G = np.asarray(G) #cast Matlab Outout to numpy array
# --- print Output ---
......
......@@ -12,6 +12,24 @@ import sys
# from subprocess import Popen, PIPE
# --------------------------------------------------
# 'classifyMin' classifies Minimizers by utilizing the result of
# Lemma1.6
#
#
#
#
# 'classifyMin_ana': (Special-Case : Lemma1.4)
# ..additionally assumes Poisson-ratio=0 => q12==0
#
#
#
# Output : MinimizingMatrix, Angle, Type, Curvature
def harmonicMean(mu_1, beta, theta):
return mu_1*(beta/(theta+(1-theta)*beta))
......@@ -55,6 +73,9 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
b2 = prestrain_b2(rho_1, beta, alpha,theta)
return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output)
# --------------------------------------------------------------------
# Classify Type of minimizer 1 = R1 , 2 = R2 , 3 = R3 # before : destinction between which axis.. (4Types )
# where
......@@ -67,6 +88,13 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
# R3 = E2 U E3 U P1.1 U P2 U H
# -------------------------------------------------------------------
def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False): #ClassifyMin_hom?
# Assumption of Classification-Lemma1.6:
# 1. [b3 == 0]
# 2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0
# TODO: check if Q is orthotropic here - assert()
if print_Output: print("Run ClassifyMin...")
CaseCount = 0
epsilon = sys.float_info.epsilon #Machine epsilon
......
......@@ -9,11 +9,13 @@ import re
import matlab.engine
import sys
from ClassifyMin import *
from HelperFunctions import *
# from CellScript import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
from vtk.util import numpy_support
from pyevtk.hl import gridToVTK
import time
# print(sys.executable)
......@@ -34,67 +36,65 @@ import time
#
# OUTPUT: Minimizer G, angle , type, curvature
# -----------------------------------------------------------------------
#
#
# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset",
# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ):
# # ------------------------------------ get mu_gamma ------------------------------
# # ---Scenario 1.1: extreme regimes
# if gamma == '0':
# print('extreme regime: gamma = 0')
# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
# print("mu_gamma:", mu_gamma)
# elif gamma == 'infinity':
# print('extreme regime: gamma = infinity')
# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1
# print("mu_gamma:", mu_gamma)
# else:
# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# # print("Run computeMuGamma for Gamma = ", gamma)
# with open(InputFilePath, 'r') as file:
# filedata = file.read()
# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
# f = open(InputFilePath,'w')
# f.write(filedata)
# f.close()
# # --- Run Cell-Problem
#
# # Check Time
# # t = time.time()
# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Cell-Problem_muGama -> faster
# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Compute_muGamma (2D Problem much much faster)
#
# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
# capture_output=True, text=True)
# # print('elapsed time:', time.time() - t)
#
# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
# with open(OutputFilePath, 'r') as file:
# output = file.read()
# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
# mu_gamma = float(s[0])
# # print("mu_gamma:", mu_gammaValue)
# # --------------------------------------------------------------------------------------
# return mu_gamma
#
# unabhängig von alpha...
def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset"):
# ------------------------------------ get mu_gamma ------------------------------
# ---Scenario 1.1: extreme regimes
if gamma == '0':
print('extreme regime: gamma = 0')
mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
print("mu_gamma:", mu_gamma)
elif gamma == 'infinity':
print('extreme regime: gamma = infinity')
mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1
print("mu_gamma:", mu_gamma)
else:
# --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# print("Run computeMuGamma for Gamma = ", gamma)
with open(InputFilePath, 'r') as file:
filedata = file.read()
filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
f = open(InputFilePath,'w')
f.write(filedata)
f.close()
# --- Run Cell-Problem
# Check Time
# t = time.time()
# subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Cell-Problem_muGama -> faster
# subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Compute_muGamma (2D Problem much much faster)
subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
capture_output=True, text=True)
# print('elapsed time:', time.time() - t)
#Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
with open(OutputFilePath, 'r') as file:
output = file.read()
tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
mu_gamma = float(s[0])
# print("mu_gamma:", mu_gammaValue)
# --------------------------------------------------------------------------------------
return mu_gamma
# --- SETUPS PATHS
# ----------- SETUP PATHS
# InputFile = "/inputs/cellsolver.parset"
# OutputFile = "/outputs/output.txt"
InputFile = "/inputs/computeMuGamma.parset"
OutputFile = "/outputs/outputMuGamma.txt"
# --------- Run from src folder:
......@@ -114,11 +114,14 @@ mu1 = 10.0 # TODO : here must be the same values as in the Parset
rho1 = 1.0
alpha = 2.0
beta = 2.0
# beta = 10.0
theta = 1.0/4.0
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
gamma = '0'
# gamma = 'infinity'
gamma = 'infinity'
# gamma = 0.5
# gamma = 0.25
# gamma = 1.0
print('---- Input parameters: -----')
print('mu1: ', mu1)
......@@ -138,12 +141,14 @@ print('----------------------------')
# print_Cases = True
# print_Output = True
#TODO
# generalCase = False #Read Output from Cell-Problem instead of using Lemma1.4 (special case)
make_3D_plot = True
# make_3D_plot = True
make_3D_PhaseDiagram = True
make_2D_plot = False
make_2D_PhaseDiagram = False
# make_3D_plot = False
make_3D_plot = False
# make_3D_PhaseDiagram = False
# make_2D_plot = True
# make_2D_PhaseDiagram = True
......@@ -183,9 +188,9 @@ make_2D_PhaseDiagram = False
# ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------
SamplePoints_3D = 10 # Number of sample points in each direction
SamplePoints_2D = 10 # Number of sample points in each direction
SamplePoints_3D = 20 # Number of sample points in each direction
# SamplePoints_3D = 10 # Number of sample points in each direction
# SamplePoints_2D = 10 # Number of sample points in each direction
SamplePoints_3D = 300 # Number of sample points in each direction
SamplePoints_2D = 10 # Number of sample points in each direction
......@@ -216,23 +221,32 @@ if make_3D_PhaseDiagram:
print('Written to VTK-File:', VTKOutputName )
if make_2D_PhaseDiagram:
alphas_ = np.linspace(-20, 20, SamplePoints_2D)
# alphas_ = np.linspace(-20, 20, SamplePoints_2D)
# thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
alphas_ = np.linspace(8, 12, SamplePoints_2D)
thetas_ = np.linspace(0.05,0.2,SamplePoints_2D)
# betas_ = np.linspace(0.01,40.01,1)
#fix to one value:
betas_ = 2.0;
thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
# print('type of alphas', type(alphas_))
# print('Test:', type(np.array([mu_gamma])) )
alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij')
classifyMin_anaVec = np.vectorize(classifyMin_ana)
# if generalCase: #TODO
# classifyMinVec = np.vectorize(classifyMin)
# GetCellOutputVec = np.vectorize(GetCellOutput)
# Q, B = GetCellOutputVec(alpha,betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
#
# print('type of Q:', type(Q))
# print('Q:', Q)
#
# else:
classifyMin_anaVec = np.vectorize(classifyMin_ana)
GetMuGammaVec = np.vectorize(GetMuGamma)
muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1)
muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!!
# print('size of G:', G.shape)
# print('G:', G)
print('Types:', Types)
# print('Types:', Types)
# Out = classifyMin_anaVec(alphas,betas,thetas)
# T = Out[2]
# --- Write to VTK
......@@ -265,8 +279,13 @@ if(make_3D_plot or make_2D_plot):
# print('Type 2 occured here:', np.where(T == 2))
print(alphas_)
print(betas_)
# print(alphas_)
# print(betas_)
# ALTERNATIVE
# colors = ("red", "green", "blue")
# groups = ("Type 1", "Type2", "Type3")
......
......@@ -9,74 +9,29 @@ import re
import matlab.engine
import sys
from ClassifyMin import *
from HelperFunctions import *
# from CellScript import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.cm as cm
from vtk.util import numpy_support
from pyevtk.hl import gridToVTK
import time
# from subprocess import Popen, PIPE
#import sys
# unabhängig von alpha...
def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset"):
# ------------------------------------ get mu_gamma ------------------------------
# ---Scenario 1.1: extreme regimes
if gamma == '0':
print('extreme regime: gamma = 0')
mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
print("mu_gamma:", mu_gamma)
elif gamma == 'infinity':
print('extreme regime: gamma = infinity')
mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1
print("mu_gamma:", mu_gamma)
else:
# --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# print("Run computeMuGamma for Gamma = ", gamma)
with open(InputFilePath, 'r') as file:
filedata = file.read()
filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
f = open(InputFilePath,'w')
f.write(filedata)
f.close()
# --- Run Cell-Problem
# Check Time
# t = time.time()
# subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Cell-Problem_muGama -> faster
# subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Compute_muGamma (2D Problem much much faster)
subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
capture_output=True, text=True)
# print('elapsed time:', time.time() - t)
#Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
with open(OutputFilePath, 'r') as file:
output = file.read()
tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
mu_gamma = float(s[0])
# print("mu_gamma:", mu_gammaValue)
# --------------------------------------------------------------------------------------
return mu_gamma
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def find_nearestIdx(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
InputFile = "/inputs/computeMuGamma.parset"
OutputFile = "/outputs/outputMuGamma.txt"
# path = os.getcwd()
# InputFilePath = os.getcwd()+InputFile
# OutputFilePath = os.getcwd()+OutputFile
# --------- Run from src folder:
path_parent = os.path.dirname(os.getcwd())
os.chdir(path_parent)
......@@ -88,42 +43,29 @@ print("InputFilepath: ", InputFilePath)
print("OutputFilepath: ", OutputFilePath)
print("Path: ", path)
#1. Define Inputs Gamma-Array..
#2. for(i=0; i<length(array)) ..compute Q_hom, B_eff from Cell-Problem
#3
# matrix = np.loadtxt(path + 'Qmatrix.txt', usecols=range(3))
# print(matrix)
# Use Shell Commands:
# subprocess.run('ls', shell=True)
#---------------------------------------------------------------
# -------------------------- Input Parameters --------------------
mu1 = 10.0
rho1 = 1.0
alpha = 10 #1.05263158
beta = 40.0 #5.0
# theta = 1.0/4.0
theta = 1.0/8.0 # 0.5
# InterestingParameterSet :
print('---- Input parameters: -----')
# mu1 = 10.0
# rho1 = 1.0
# alpha = 10
# beta = 40.0
# theta = 1.0/8.0
# theta = 0.125
#
mu1 = 10.0
rho1 = 1.0
# alpha = 10.02021333
alpha = 10.0
beta = 2.0
theta = 0.125
# theta = 0.124242
# gamma = 0.75
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
# gamma = '0'
# gamma = 'infinity'
# gamma = 0.5
# gamma = 0.25
print('---- Input parameters: -----')
print('mu1: ', mu1)
print('rho1: ', rho1)
print('alpha: ', alpha)
......@@ -131,116 +73,90 @@ print('beta: ', beta)
print('theta: ', theta)
# print('gamma:', gamma)
print('----------------------------')
# ----------------------------------------------------------------
# ----------------------------------------------------------------
Gamma_Values = np.linspace(0.01, 5, num=15) # TODO variable Input Parameters...alpha,beta...
gamma_min = 0.01
gamma_max = 1.0
Gamma_Values = np.linspace(gamma_min, gamma_max, num=100) # TODO variable Input Parameters...alpha,beta...
print('(Input) Gamma_Values:', Gamma_Values)
# mu_gamma = []
#
# # --- Options
# RUN = True
# # RUN = False
# # make_Plot = False
make_Plot = True # vll besser : Plot_muGamma
#
# if RUN:
# for gamma in Gamma_Values:
# print("Run Cell-Problem for Gamma = ", gamma)
# # print('gamma='+str(gamma))
# with open(InputFilePath, 'r') as file:
# filedata = file.read()
# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# f = open(InputFilePath,'w')
# f.write(filedata)
# f.close()
# # --- Run Cell-Problem
# t = time.time()
# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Cell-Problem_muGama -> faster
# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Compute_muGamma (2D Problem much much faster)
# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
# capture_output=True, text=True)
# print('elapsed time:', time.time() - t)
#
# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
# with open(OutputFilePath, 'r') as file:
# output = file.read()
# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
# mu_gammaValue = float(s[0])
# print("mu_gamma:", mu_gammaValue)
# mu_gamma.append(mu_gammaValue)
# # ------------end of for-loop -----------------
# print("(Output) Values of mu_gamma: ", mu_gamma)
# # ----------------end of if-statement -------------
#
# # mu_gamma=[2.06099, 1.90567, 1.905]
# # mu_gamma=[2.08306, 1.905, 1.90482, 1.90479, 1.90478, 1.90477]
#
# ##Gamma_Values = np.linspace(0.01, 20, num=12) :
# #mu_gamma= [2.08306, 1.91108, 1.90648, 1.90554, 1.90521, 1.90505, 1.90496, 1.90491, 1.90487, 1.90485, 1.90483, 1.90482]
#
# ##Gamma_Values = np.linspace(0.01, 2.5, num=12)
# # mu_gamma=[2.08306, 2.01137, 1.96113, 1.93772, 1.92592, 1.91937, 1.91541, 1.91286, 1.91112, 1.90988, 1.90897, 1.90828]
#
# # Gamma_Values = np.linspace(0.01, 2.5, num=6)
# # mu_gamma=[2.08306, 1.95497, 1.92287, 1.91375, 1.9101, 1.90828]
make_Plot = True
# Get values for mu_Gamma
GetMuGammaVec = np.vectorize(GetMuGamma)
muGammas = GetMuGammaVec(beta,theta,Gamma_Values,mu1,rho1)
muGammas = GetMuGammaVec(beta,theta,Gamma_Values,mu1,rho1, InputFilePath ,OutputFilePath )
print('muGammas:', muGammas)
q12 = 0.0
q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta)
q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta)
print('q1: ', q1)
print('q2: ', q2)
b1 = prestrain_b1(rho1, beta, alpha,theta)
b2 = prestrain_b2(rho1, beta, alpha,theta)
q3_star = math.sqrt(q1*q2)
print('q3_star:', q3_star)
classifyMin_anaVec = np.vectorize(classifyMin_ana)
# TODO these have to be compatible with input parameters!!!
# compute certain ParameterValues that this makes sense
# b1 = q3_star
# b2 = q1
print('b1: ', b1)
print('b2: ', b2)
# return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output)
# classifyMin_anaVec = np.vectorize(classifyMin_ana)
# G, angles, Types, curvature = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
classifyMin_anaVec = np.vectorize(classifyMin_ana)
G, angles, Types, curvature = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
# _,angles,_,_ = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
print('angles:', angles)
idx = find_nearestIdx(muGammas, q3_star)
print('GammaValue Idx closest to q_3^*', idx)
gammaClose = Gamma_Values[idx]
print('GammaValue(Idx) with mu_gamma closest to q_3^*', gammaClose)
# Make Plot
if make_Plot:
plt.figure()
plt.title(r'angle$-\mu_\gamma(\gamma)$-Plot')
plt.plot(muGammas, angles)
plt.scatter(muGammas, angles)
# plt.title(r'angle$-\mu_\gamma(\gamma)$-Plot')
plt.title(r'angle$-\gamma$-Plot')
plt.plot(Gamma_Values, angles)
plt.scatter(Gamma_Values, angles)
# plt.plot(muGammas, angles)
# plt.scatter(muGammas, angles)
# plt.axis([0, 6, 0, 20])
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
plt.axvline(x = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
plt.axvline(x = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
plt.xlabel("$\mu_\gamma$")
# plt.axvline(x = q1, color = 'b', linestyle = ':', label='$q_1$')
# plt.axvline(x = q2, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.axvline(x = q3_star, color = 'r', linestyle = 'dashed', label='$\gamma^*$')
# Plot Gamma Value that is closest to q3_star
plt.axvline(x = gammaClose, color = 'b', linestyle = 'dashed', label='$\gamma^*$')
plt.axvspan(gamma_min, gammaClose, color='red', alpha=0.5)
plt.axvspan(gammaClose, gamma_max, color='green', alpha=0.5)
plt.xlabel("$\gamma$")
plt.ylabel("angle")
plt.legend()
plt.show()
#
# # ------------- RUN Matlab symbolic minimization program
# eng = matlab.engine.start_matlab()
# # s = eng.genpath(path + '/Matlab-Programs')
# s = eng.genpath(path)
# eng.addpath(s, nargout=0)
# # print('current Matlab folder:', eng.pwd(nargout=1))
# eng.cd('Matlab-Programs', nargout=0) #switch to Matlab-Programs folder
# # print('current Matlab folder:', eng.pwd(nargout=1))
# Inp = False
# print('Run symbolic Minimization...')
# G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp, nargout=4) #Name of program:symMinimization
# # G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp,path + "/outputs", nargout=4) #Optional: add Path
# G = np.asarray(G) #cast Matlab Outout to numpy array
#
# # --- print Output ---
# print('Minimizer G:')
# print(G)
# print('angle:', angle)
# print('type:', type )
# print('curvature:', kappa)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment