Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-microstructure-backup
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Klaus Böhnlein
dune-microstructure-backup
Commits
26ec8c07
Commit
26ec8c07
authored
3 years ago
by
Klaus Böhnlein
Browse files
Options
Downloads
Patches
Plain Diff
Update
parent
b5835d1c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/CellScript.py
+17
-7
17 additions, 7 deletions
src/CellScript.py
src/ClassifyMin.py
+28
-0
28 additions, 0 deletions
src/ClassifyMin.py
src/PhaseDiagram.py
+91
-72
91 additions, 72 deletions
src/PhaseDiagram.py
src/Plotq3-Angle.py
+82
-166
82 additions, 166 deletions
src/Plotq3-Angle.py
with
218 additions
and
245 deletions
src/CellScript.py
+
17
−
7
View file @
26ec8c07
...
@@ -17,6 +17,11 @@ import sys
...
@@ -17,6 +17,11 @@ import sys
# ----------------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------------
# ----- Setup Paths -----
# ----- Setup Paths -----
InputFile
=
"
/inputs/cellsolver.parset
"
InputFile
=
"
/inputs/cellsolver.parset
"
OutputFile
=
"
/outputs/output.txt
"
OutputFile
=
"
/outputs/output.txt
"
...
@@ -50,14 +55,19 @@ print('----------------------------')
...
@@ -50,14 +55,19 @@ print('----------------------------')
print
(
'
RunCellProblem...
'
)
RunCellProblem
(
alpha
,
beta
,
theta
,
gamma
,
mu1
,
rho1
,
InputFilePath
)
print
(
'
Read effective quantities...
'
)
Q
,
B
=
ReadEffectiveQuantities
()
print
(
'
Q:
'
,
Q
)
print
(
'
B:
'
,
B
)
#
# print('RunCellProblem...')
# RunCellProblem(alpha,beta,theta,gamma,mu1,rho1,InputFilePath)
#
TEST
:
#
Compare symbolicMinimization with Classification 'ClassifyMin'
:
print
(
'
Compare_Classification...
'
)
#
print('Compare_Classification...')
Compare_Classification
(
alpha
,
beta
,
theta
,
gamma
,
mu1
,
rho1
,
InputFilePath
)
#
Compare_Classification(alpha,beta,theta,gamma,mu1,rho1,InputFilePath)
...
@@ -73,7 +83,7 @@ Inp = False
...
@@ -73,7 +83,7 @@ Inp = False
Inp_T
=
True
Inp_T
=
True
print
(
'
Run symbolic Minimization...
'
)
print
(
'
Run symbolic Minimization...
'
)
#Arguments: symMinization(print_Input,print_statPoint,print_Output,make_FunctionPlot, InputPath)
#Arguments: symMinization(print_Input,print_statPoint,print_Output,make_FunctionPlot, InputPath)
G
,
angle
,
type
,
kappa
=
eng
.
symMinimization
(
Inp
_T
,
Inp
,
Inp
,
Inp
,
nargout
=
4
)
#Name of program:symMinimization
G
,
angle
,
type
,
kappa
=
eng
.
symMinimization
(
Inp
,
Inp
,
Inp
,
Inp
,
nargout
=
4
)
#Name of program:symMinimization
# G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp,path + "/outputs", nargout=4) #Optional: add Path
# G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp,path + "/outputs", nargout=4) #Optional: add Path
G
=
np
.
asarray
(
G
)
#cast Matlab Outout to numpy array
G
=
np
.
asarray
(
G
)
#cast Matlab Outout to numpy array
# --- print Output ---
# --- print Output ---
...
...
This diff is collapsed.
Click to expand it.
src/ClassifyMin.py
+
28
−
0
View file @
26ec8c07
...
@@ -12,6 +12,24 @@ import sys
...
@@ -12,6 +12,24 @@ import sys
# from subprocess import Popen, PIPE
# from subprocess import Popen, PIPE
# --------------------------------------------------
# 'classifyMin' classifies Minimizers by utilizing the result of
# Lemma1.6
#
#
#
#
# 'classifyMin_ana': (Special-Case : Lemma1.4)
# ..additionally assumes Poisson-ratio=0 => q12==0
#
#
#
# Output : MinimizingMatrix, Angle, Type, Curvature
def
harmonicMean
(
mu_1
,
beta
,
theta
):
def
harmonicMean
(
mu_1
,
beta
,
theta
):
return
mu_1
*
(
beta
/
(
theta
+
(
1
-
theta
)
*
beta
))
return
mu_1
*
(
beta
/
(
theta
+
(
1
-
theta
)
*
beta
))
...
@@ -55,6 +73,9 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
...
@@ -55,6 +73,9 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
b2
=
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho_1
,
beta
,
alpha
,
theta
)
return
classifyMin
(
q1
,
q2
,
q3
,
q12
,
b1
,
b2
,
print_Cases
,
print_Output
)
return
classifyMin
(
q1
,
q2
,
q3
,
q12
,
b1
,
b2
,
print_Cases
,
print_Output
)
# --------------------------------------------------------------------
# --------------------------------------------------------------------
# Classify Type of minimizer 1 = R1 , 2 = R2 , 3 = R3 # before : destinction between which axis.. (4Types )
# Classify Type of minimizer 1 = R1 , 2 = R2 , 3 = R3 # before : destinction between which axis.. (4Types )
# where
# where
...
@@ -67,6 +88,13 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
...
@@ -67,6 +88,13 @@ def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Outp
# R3 = E2 U E3 U P1.1 U P2 U H
# R3 = E2 U E3 U P1.1 U P2 U H
# -------------------------------------------------------------------
# -------------------------------------------------------------------
def
classifyMin
(
q1
,
q2
,
q3
,
q12
,
b1
,
b2
,
print_Cases
=
False
,
print_Output
=
False
):
#ClassifyMin_hom?
def
classifyMin
(
q1
,
q2
,
q3
,
q12
,
b1
,
b2
,
print_Cases
=
False
,
print_Output
=
False
):
#ClassifyMin_hom?
# Assumption of Classification-Lemma1.6:
# 1. [b3 == 0]
# 2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0
# TODO: check if Q is orthotropic here - assert()
if
print_Output
:
print
(
"
Run ClassifyMin...
"
)
if
print_Output
:
print
(
"
Run ClassifyMin...
"
)
CaseCount
=
0
CaseCount
=
0
epsilon
=
sys
.
float_info
.
epsilon
#Machine epsilon
epsilon
=
sys
.
float_info
.
epsilon
#Machine epsilon
...
...
This diff is collapsed.
Click to expand it.
src/PhaseDiagram.py
+
91
−
72
View file @
26ec8c07
...
@@ -9,11 +9,13 @@ import re
...
@@ -9,11 +9,13 @@ import re
import
matlab.engine
import
matlab.engine
import
sys
import
sys
from
ClassifyMin
import
*
from
ClassifyMin
import
*
from
HelperFunctions
import
*
# from CellScript import *
# from CellScript import *
from
mpl_toolkits.mplot3d
import
Axes3D
from
mpl_toolkits.mplot3d
import
Axes3D
import
matplotlib.cm
as
cm
import
matplotlib.cm
as
cm
from
vtk.util
import
numpy_support
from
vtk.util
import
numpy_support
from
pyevtk.hl
import
gridToVTK
from
pyevtk.hl
import
gridToVTK
import
time
import
time
# print(sys.executable)
# print(sys.executable)
...
@@ -34,67 +36,65 @@ import time
...
@@ -34,67 +36,65 @@ import time
#
#
# OUTPUT: Minimizer G, angle , type, curvature
# OUTPUT: Minimizer G, angle , type, curvature
# -----------------------------------------------------------------------
# -----------------------------------------------------------------------
#
#
# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset",
# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ):
# # ------------------------------------ get mu_gamma ------------------------------
# # ---Scenario 1.1: extreme regimes
# if gamma == '0':
# print('extreme regime: gamma = 0')
# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2
# print("mu_gamma:", mu_gamma)
# elif gamma == 'infinity':
# print('extreme regime: gamma = infinity')
# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1
# print("mu_gamma:", mu_gamma)
# else:
# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# # print("Run computeMuGamma for Gamma = ", gamma)
# with open(InputFilePath, 'r') as file:
# filedata = file.read()
# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata)
# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata)
# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata)
# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata)
# f = open(InputFilePath,'w')
# f.write(filedata)
# f.close()
# # --- Run Cell-Problem
#
# # Check Time
# # t = time.time()
# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Cell-Problem_muGama -> faster
# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Compute_muGamma (2D Problem much much faster)
#
# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
# capture_output=True, text=True)
# # print('elapsed time:', time.time() - t)
#
# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
# with open(OutputFilePath, 'r') as file:
# output = file.read()
# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
# mu_gamma = float(s[0])
# # print("mu_gamma:", mu_gammaValue)
# # --------------------------------------------------------------------------------------
# return mu_gamma
#
# unabhängig von alpha...
# ----------- SETUP PATHS
def
GetMuGamma
(
beta
,
theta
,
gamma
,
mu1
,
rho1
,
InputFilePath
=
os
.
path
.
dirname
(
os
.
getcwd
())
+
"
/inputs/computeMuGamma.parset
"
):
# ------------------------------------ get mu_gamma ------------------------------
# ---Scenario 1.1: extreme regimes
if
gamma
==
'
0
'
:
print
(
'
extreme regime: gamma = 0
'
)
mu_gamma
=
(
1.0
/
6.0
)
*
arithmeticMean
(
mu1
,
beta
,
theta
)
# = q2
print
(
"
mu_gamma:
"
,
mu_gamma
)
elif
gamma
==
'
infinity
'
:
print
(
'
extreme regime: gamma = infinity
'
)
mu_gamma
=
(
1.0
/
6.0
)
*
harmonicMean
(
mu1
,
beta
,
theta
)
# = q1
print
(
"
mu_gamma:
"
,
mu_gamma
)
else
:
# --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# print("Run computeMuGamma for Gamma = ", gamma)
with
open
(
InputFilePath
,
'
r
'
)
as
file
:
filedata
=
file
.
read
()
filedata
=
re
.
sub
(
'
(?m)^gamma=.*
'
,
'
gamma=
'
+
str
(
gamma
),
filedata
)
# filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
filedata
=
re
.
sub
(
'
(?m)^beta=.*
'
,
'
beta=
'
+
str
(
beta
),
filedata
)
filedata
=
re
.
sub
(
'
(?m)^theta=.*
'
,
'
theta=
'
+
str
(
theta
),
filedata
)
filedata
=
re
.
sub
(
'
(?m)^mu1=.*
'
,
'
mu1=
'
+
str
(
mu1
),
filedata
)
filedata
=
re
.
sub
(
'
(?m)^rho1=.*
'
,
'
rho1=
'
+
str
(
rho1
),
filedata
)
f
=
open
(
InputFilePath
,
'
w
'
)
f
.
write
(
filedata
)
f
.
close
()
# --- Run Cell-Problem
# Check Time
# t = time.time()
# subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Cell-Problem_muGama -> faster
# subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Compute_muGamma (2D Problem much much faster)
subprocess
.
run
([
'
./build-cmake/src/Compute_MuGamma
'
,
'
./inputs/computeMuGamma.parset
'
],
capture_output
=
True
,
text
=
True
)
# print('elapsed time:', time.time() - t)
#Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
with
open
(
OutputFilePath
,
'
r
'
)
as
file
:
output
=
file
.
read
()
tmp
=
re
.
search
(
r
'
(?m)^mu_gamma=.*
'
,
output
).
group
()
# Not necessary for Intention of Program t output Minimizer etc.....
s
=
re
.
findall
(
r
"
[-+]?\d*\.\d+|\d+
"
,
tmp
)
mu_gamma
=
float
(
s
[
0
])
# print("mu_gamma:", mu_gammaValue)
# --------------------------------------------------------------------------------------
return
mu_gamma
# --- SETUPS PATHS
# InputFile = "/inputs/cellsolver.parset"
# InputFile = "/inputs/cellsolver.parset"
# OutputFile = "/outputs/output.txt"
# OutputFile = "/outputs/output.txt"
InputFile
=
"
/inputs/computeMuGamma.parset
"
InputFile
=
"
/inputs/computeMuGamma.parset
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
# --------- Run from src folder:
# --------- Run from src folder:
...
@@ -114,11 +114,14 @@ mu1 = 10.0 # TODO : here must be the same values as in the Parset
...
@@ -114,11 +114,14 @@ mu1 = 10.0 # TODO : here must be the same values as in the Parset
rho1
=
1.0
rho1
=
1.0
alpha
=
2.0
alpha
=
2.0
beta
=
2.0
beta
=
2.0
# beta = 10.0
theta
=
1.0
/
4.0
theta
=
1.0
/
4.0
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
gamma
=
'
0
'
gamma
=
'
0
'
#
gamma = 'infinity'
gamma
=
'
infinity
'
# gamma = 0.5
# gamma = 0.5
# gamma = 0.25
# gamma = 1.0
print
(
'
---- Input parameters: -----
'
)
print
(
'
---- Input parameters: -----
'
)
print
(
'
mu1:
'
,
mu1
)
print
(
'
mu1:
'
,
mu1
)
...
@@ -138,12 +141,14 @@ print('----------------------------')
...
@@ -138,12 +141,14 @@ print('----------------------------')
# print_Cases = True
# print_Cases = True
# print_Output = True
# print_Output = True
#TODO
# generalCase = False #Read Output from Cell-Problem instead of using Lemma1.4 (special case)
make_3D_plot
=
True
#
make_3D_plot = True
make_3D_PhaseDiagram
=
True
make_3D_PhaseDiagram
=
True
make_2D_plot
=
False
make_2D_plot
=
False
make_2D_PhaseDiagram
=
False
make_2D_PhaseDiagram
=
False
#
make_3D_plot = False
make_3D_plot
=
False
# make_3D_PhaseDiagram = False
# make_3D_PhaseDiagram = False
# make_2D_plot = True
# make_2D_plot = True
# make_2D_PhaseDiagram = True
# make_2D_PhaseDiagram = True
...
@@ -183,9 +188,9 @@ make_2D_PhaseDiagram = False
...
@@ -183,9 +188,9 @@ make_2D_PhaseDiagram = False
# ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------
# ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------
SamplePoints_3D
=
10
# Number of sample points in each direction
#
SamplePoints_3D = 10 # Number of sample points in each direction
SamplePoints_2D
=
10
# Number of sample points in each direction
#
SamplePoints_2D = 10 # Number of sample points in each direction
SamplePoints_3D
=
2
0
# Number of sample points in each direction
SamplePoints_3D
=
30
0
# Number of sample points in each direction
SamplePoints_2D
=
10
# Number of sample points in each direction
SamplePoints_2D
=
10
# Number of sample points in each direction
...
@@ -216,23 +221,32 @@ if make_3D_PhaseDiagram:
...
@@ -216,23 +221,32 @@ if make_3D_PhaseDiagram:
print
(
'
Written to VTK-File:
'
,
VTKOutputName
)
print
(
'
Written to VTK-File:
'
,
VTKOutputName
)
if
make_2D_PhaseDiagram
:
if
make_2D_PhaseDiagram
:
alphas_
=
np
.
linspace
(
-
20
,
20
,
SamplePoints_2D
)
# alphas_ = np.linspace(-20, 20, SamplePoints_2D)
# thetas_ = np.linspace(0.01,0.99,SamplePoints_2D)
alphas_
=
np
.
linspace
(
8
,
12
,
SamplePoints_2D
)
thetas_
=
np
.
linspace
(
0.05
,
0.2
,
SamplePoints_2D
)
# betas_ = np.linspace(0.01,40.01,1)
# betas_ = np.linspace(0.01,40.01,1)
#fix to one value:
#fix to one value:
betas_
=
2.0
;
betas_
=
2.0
;
thetas_
=
np
.
linspace
(
0.01
,
0.99
,
SamplePoints_2D
)
# print('type of alphas', type(alphas_))
# print('Test:', type(np.array([mu_gamma])) )
alphas
,
betas
,
thetas
=
np
.
meshgrid
(
alphas_
,
betas_
,
thetas_
,
indexing
=
'
ij
'
)
alphas
,
betas
,
thetas
=
np
.
meshgrid
(
alphas_
,
betas_
,
thetas_
,
indexing
=
'
ij
'
)
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
# if generalCase: #TODO
# classifyMinVec = np.vectorize(classifyMin)
# GetCellOutputVec = np.vectorize(GetCellOutput)
# Q, B = GetCellOutputVec(alpha,betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath )
#
# print('type of Q:', type(Q))
# print('Q:', Q)
#
# else:
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
muGammas
=
GetMuGammaVec
(
betas
,
thetas
,
gamma
,
mu1
,
rho1
)
muGammas
=
GetMuGammaVec
(
betas
,
thetas
,
gamma
,
mu1
,
rho1
,
InputFilePath
,
OutputFilePath
)
G
,
angles
,
Types
,
curvature
=
classifyMin_anaVec
(
alphas
,
betas
,
thetas
,
muGammas
,
mu1
,
rho1
)
# Sets q12 to zero!!!
G
,
angles
,
Types
,
curvature
=
classifyMin_anaVec
(
alphas
,
betas
,
thetas
,
muGammas
,
mu1
,
rho1
)
# Sets q12 to zero!!!
# print('size of G:', G.shape)
# print('size of G:', G.shape)
# print('G:', G)
# print('G:', G)
print
(
'
Types:
'
,
Types
)
#
print('Types:', Types)
# Out = classifyMin_anaVec(alphas,betas,thetas)
# Out = classifyMin_anaVec(alphas,betas,thetas)
# T = Out[2]
# T = Out[2]
# --- Write to VTK
# --- Write to VTK
...
@@ -265,8 +279,13 @@ if(make_3D_plot or make_2D_plot):
...
@@ -265,8 +279,13 @@ if(make_3D_plot or make_2D_plot):
# print('Type 2 occured here:', np.where(T == 2))
# print('Type 2 occured here:', np.where(T == 2))
print
(
alphas_
)
# print(alphas_)
print
(
betas_
)
# print(betas_)
# ALTERNATIVE
# ALTERNATIVE
# colors = ("red", "green", "blue")
# colors = ("red", "green", "blue")
# groups = ("Type 1", "Type2", "Type3")
# groups = ("Type 1", "Type2", "Type3")
...
...
This diff is collapsed.
Click to expand it.
src/Plotq3-Angle.py
+
82
−
166
View file @
26ec8c07
...
@@ -9,74 +9,29 @@ import re
...
@@ -9,74 +9,29 @@ import re
import
matlab.engine
import
matlab.engine
import
sys
import
sys
from
ClassifyMin
import
*
from
ClassifyMin
import
*
from
HelperFunctions
import
*
# from CellScript import *
# from CellScript import *
from
mpl_toolkits.mplot3d
import
Axes3D
from
mpl_toolkits.mplot3d
import
Axes3D
import
matplotlib.cm
as
cm
import
matplotlib.cm
as
cm
from
vtk.util
import
numpy_support
from
vtk.util
import
numpy_support
from
pyevtk.hl
import
gridToVTK
from
pyevtk.hl
import
gridToVTK
import
time
import
time
# from subprocess import Popen, PIPE
#import sys
# unabhängig von alpha...
def
GetMuGamma
(
beta
,
theta
,
gamma
,
mu1
,
rho1
,
InputFilePath
=
os
.
path
.
dirname
(
os
.
getcwd
())
+
"
/inputs/computeMuGamma.parset
"
):
# ------------------------------------ get mu_gamma ------------------------------
# ---Scenario 1.1: extreme regimes
if
gamma
==
'
0
'
:
print
(
'
extreme regime: gamma = 0
'
)
mu_gamma
=
(
1.0
/
6.0
)
*
arithmeticMean
(
mu1
,
beta
,
theta
)
# = q2
print
(
"
mu_gamma:
"
,
mu_gamma
)
elif
gamma
==
'
infinity
'
:
print
(
'
extreme regime: gamma = infinity
'
)
mu_gamma
=
(
1.0
/
6.0
)
*
harmonicMean
(
mu1
,
beta
,
theta
)
# = q1
print
(
"
mu_gamma:
"
,
mu_gamma
)
else
:
# --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem)
# print("Run computeMuGamma for Gamma = ", gamma)
with
open
(
InputFilePath
,
'
r
'
)
as
file
:
filedata
=
file
.
read
()
filedata
=
re
.
sub
(
'
(?m)^gamma=.*
'
,
'
gamma=
'
+
str
(
gamma
),
filedata
)
# filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata)
filedata
=
re
.
sub
(
'
(?m)^beta=.*
'
,
'
beta=
'
+
str
(
beta
),
filedata
)
filedata
=
re
.
sub
(
'
(?m)^theta=.*
'
,
'
theta=
'
+
str
(
theta
),
filedata
)
filedata
=
re
.
sub
(
'
(?m)^mu1=.*
'
,
'
mu1=
'
+
str
(
mu1
),
filedata
)
filedata
=
re
.
sub
(
'
(?m)^rho1=.*
'
,
'
rho1=
'
+
str
(
rho1
),
filedata
)
f
=
open
(
InputFilePath
,
'
w
'
)
f
.
write
(
filedata
)
f
.
close
()
# --- Run Cell-Problem
# Check Time
# t = time.time()
# subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Cell-Problem_muGama -> faster
# subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# capture_output=True, text=True)
# --- Run Compute_muGamma (2D Problem much much faster)
subprocess
.
run
([
'
./build-cmake/src/Compute_MuGamma
'
,
'
./inputs/computeMuGamma.parset
'
],
capture_output
=
True
,
text
=
True
)
# print('elapsed time:', time.time() - t)
#Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
with
open
(
OutputFilePath
,
'
r
'
)
as
file
:
output
=
file
.
read
()
tmp
=
re
.
search
(
r
'
(?m)^mu_gamma=.*
'
,
output
).
group
()
# Not necessary for Intention of Program t output Minimizer etc.....
s
=
re
.
findall
(
r
"
[-+]?\d*\.\d+|\d+
"
,
tmp
)
mu_gamma
=
float
(
s
[
0
])
# print("mu_gamma:", mu_gammaValue)
# --------------------------------------------------------------------------------------
return
mu_gamma
def
find_nearest
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
array
[
idx
]
def
find_nearestIdx
(
array
,
value
):
array
=
np
.
asarray
(
array
)
idx
=
(
np
.
abs
(
array
-
value
)).
argmin
()
return
idx
InputFile
=
"
/inputs/computeMuGamma.parset
"
InputFile
=
"
/inputs/computeMuGamma.parset
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
OutputFile
=
"
/outputs/outputMuGamma.txt
"
# path = os.getcwd()
# InputFilePath = os.getcwd()+InputFile
# OutputFilePath = os.getcwd()+OutputFile
# --------- Run from src folder:
# --------- Run from src folder:
path_parent
=
os
.
path
.
dirname
(
os
.
getcwd
())
path_parent
=
os
.
path
.
dirname
(
os
.
getcwd
())
os
.
chdir
(
path_parent
)
os
.
chdir
(
path_parent
)
...
@@ -88,42 +43,29 @@ print("InputFilepath: ", InputFilePath)
...
@@ -88,42 +43,29 @@ print("InputFilepath: ", InputFilePath)
print
(
"
OutputFilepath:
"
,
OutputFilePath
)
print
(
"
OutputFilepath:
"
,
OutputFilePath
)
print
(
"
Path:
"
,
path
)
print
(
"
Path:
"
,
path
)
print
(
'
---- Input parameters: -----
'
)
#1. Define Inputs Gamma-Array..
#2. for(i=0; i<length(array)) ..compute Q_hom, B_eff from Cell-Problem
#3
# matrix = np.loadtxt(path + 'Qmatrix.txt', usecols=range(3))
# print(matrix)
# Use Shell Commands:
# subprocess.run('ls', shell=True)
#---------------------------------------------------------------
# -------------------------- Input Parameters --------------------
mu1
=
10.0
rho1
=
1.0
alpha
=
10
#1.05263158
beta
=
40.0
#5.0
# theta = 1.0/4.0
theta
=
1.0
/
8.0
# 0.5
# InterestingParameterSet :
# mu1 = 10.0
# mu1 = 10.0
# rho1 = 1.0
# rho1 = 1.0
# alpha = 10
# alpha = 10
# beta = 40.0
# beta = 40.0
# theta = 1.0/8.0
# theta = 0.125
#
mu1
=
10.0
rho1
=
1.0
# alpha = 10.02021333
alpha
=
10.0
beta
=
2.0
theta
=
0.125
# theta = 0.124242
# gamma = 0.75
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value
# gamma = '0'
# gamma = '0'
# gamma = 'infinity'
# gamma = 'infinity'
# gamma = 0.5
# gamma = 0.5
# gamma = 0.25
print
(
'
---- Input parameters: -----
'
)
print
(
'
mu1:
'
,
mu1
)
print
(
'
mu1:
'
,
mu1
)
print
(
'
rho1:
'
,
rho1
)
print
(
'
rho1:
'
,
rho1
)
print
(
'
alpha:
'
,
alpha
)
print
(
'
alpha:
'
,
alpha
)
...
@@ -131,116 +73,90 @@ print('beta: ', beta)
...
@@ -131,116 +73,90 @@ print('beta: ', beta)
print
(
'
theta:
'
,
theta
)
print
(
'
theta:
'
,
theta
)
# print('gamma:', gamma)
# print('gamma:', gamma)
print
(
'
----------------------------
'
)
print
(
'
----------------------------
'
)
# ----------------------------------------------------------------
# ----------------------------------------------------------------
Gamma_Values
=
np
.
linspace
(
0.01
,
5
,
num
=
15
)
# TODO variable Input Parameters...alpha,beta...
gamma_min
=
0.01
gamma_max
=
1.0
Gamma_Values
=
np
.
linspace
(
gamma_min
,
gamma_max
,
num
=
100
)
# TODO variable Input Parameters...alpha,beta...
print
(
'
(Input) Gamma_Values:
'
,
Gamma_Values
)
print
(
'
(Input) Gamma_Values:
'
,
Gamma_Values
)
# mu_gamma = []
# mu_gamma = []
#
# # --- Options
# # --- Options
# RUN = True
# # RUN = False
# # make_Plot = False
# # make_Plot = False
make_Plot
=
True
# vll besser : Plot_muGamma
make_Plot
=
True
#
# if RUN:
# for gamma in Gamma_Values:
# print("Run Cell-Problem for Gamma = ", gamma)
# # print('gamma='+str(gamma))
# with open(InputFilePath, 'r') as file:
# filedata = file.read()
# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata)
# f = open(InputFilePath,'w')
# f.write(filedata)
# f.close()
# # --- Run Cell-Problem
# t = time.time()
# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Cell-Problem_muGama -> faster
# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'],
# # capture_output=True, text=True)
# # --- Run Compute_muGamma (2D Problem much much faster)
# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'],
# capture_output=True, text=True)
# print('elapsed time:', time.time() - t)
#
# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST
# with open(OutputFilePath, 'r') as file:
# output = file.read()
# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc.....
# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp)
# mu_gammaValue = float(s[0])
# print("mu_gamma:", mu_gammaValue)
# mu_gamma.append(mu_gammaValue)
# # ------------end of for-loop -----------------
# print("(Output) Values of mu_gamma: ", mu_gamma)
# # ----------------end of if-statement -------------
#
# # mu_gamma=[2.06099, 1.90567, 1.905]
# # mu_gamma=[2.08306, 1.905, 1.90482, 1.90479, 1.90478, 1.90477]
#
# ##Gamma_Values = np.linspace(0.01, 20, num=12) :
# #mu_gamma= [2.08306, 1.91108, 1.90648, 1.90554, 1.90521, 1.90505, 1.90496, 1.90491, 1.90487, 1.90485, 1.90483, 1.90482]
#
# ##Gamma_Values = np.linspace(0.01, 2.5, num=12)
# # mu_gamma=[2.08306, 2.01137, 1.96113, 1.93772, 1.92592, 1.91937, 1.91541, 1.91286, 1.91112, 1.90988, 1.90897, 1.90828]
#
# # Gamma_Values = np.linspace(0.01, 2.5, num=6)
# # mu_gamma=[2.08306, 1.95497, 1.92287, 1.91375, 1.9101, 1.90828]
# Get values for mu_Gamma
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
GetMuGammaVec
=
np
.
vectorize
(
GetMuGamma
)
muGammas
=
GetMuGammaVec
(
beta
,
theta
,
Gamma_Values
,
mu1
,
rho1
)
muGammas
=
GetMuGammaVec
(
beta
,
theta
,
Gamma_Values
,
mu1
,
rho1
,
InputFilePath
,
OutputFilePath
)
print
(
'
muGammas:
'
,
muGammas
)
q12
=
0.0
q1
=
(
1.0
/
6.0
)
*
harmonicMean
(
mu1
,
beta
,
theta
)
q2
=
(
1.0
/
6.0
)
*
arithmeticMean
(
mu1
,
beta
,
theta
)
print
(
'
q1:
'
,
q1
)
print
(
'
q2:
'
,
q2
)
b1
=
prestrain_b1
(
rho1
,
beta
,
alpha
,
theta
)
b2
=
prestrain_b2
(
rho1
,
beta
,
alpha
,
theta
)
q3_star
=
math
.
sqrt
(
q1
*
q2
)
print
(
'
q3_star:
'
,
q3_star
)
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
# TODO these have to be compatible with input parameters!!!
# compute certain ParameterValues that this makes sense
# b1 = q3_star
# b2 = q1
print
(
'
b1:
'
,
b1
)
print
(
'
b2:
'
,
b2
)
# return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output)
# classifyMin_anaVec = np.vectorize(classifyMin_ana)
# G, angles, Types, curvature = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
classifyMin_anaVec
=
np
.
vectorize
(
classifyMin_ana
)
G
,
angles
,
Types
,
curvature
=
classifyMin_anaVec
(
alpha
,
beta
,
theta
,
muGammas
,
mu1
,
rho1
)
G
,
angles
,
Types
,
curvature
=
classifyMin_anaVec
(
alpha
,
beta
,
theta
,
muGammas
,
mu1
,
rho1
)
# _,angles,_,_ = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
# _,angles,_,_ = classifyMin_anaVec(alpha, beta, theta, muGammas, mu1, rho1)
print
(
'
angles:
'
,
angles
)
print
(
'
angles:
'
,
angles
)
idx
=
find_nearestIdx
(
muGammas
,
q3_star
)
print
(
'
GammaValue Idx closest to q_3^*
'
,
idx
)
gammaClose
=
Gamma_Values
[
idx
]
print
(
'
GammaValue(Idx) with mu_gamma closest to q_3^*
'
,
gammaClose
)
# Make Plot
# Make Plot
if
make_Plot
:
if
make_Plot
:
plt
.
figure
()
plt
.
figure
()
plt
.
title
(
r
'
angle$-\mu_\gamma(\gamma)$-Plot
'
)
# plt.title(r'angle$-\mu_\gamma(\gamma)$-Plot')
plt
.
plot
(
muGammas
,
angles
)
plt
.
title
(
r
'
angle$-\gamma$-Plot
'
)
plt
.
scatter
(
muGammas
,
angles
)
plt
.
plot
(
Gamma_Values
,
angles
)
plt
.
scatter
(
Gamma_Values
,
angles
)
# plt.plot(muGammas, angles)
# plt.scatter(muGammas, angles)
# plt.axis([0, 6, 0, 20])
# plt.axis([0, 6, 0, 20])
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
# plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$')
plt
.
axvline
(
x
=
1.90476
,
color
=
'
b
'
,
linestyle
=
'
:
'
,
label
=
'
$q_1$
'
)
# plt.axvline(x = q1, color = 'b', linestyle = ':', label='$q_1$')
plt
.
axvline
(
x
=
2.08333
,
color
=
'
r
'
,
linestyle
=
'
dashed
'
,
label
=
'
$q_2$
'
)
# plt.axvline(x = q2, color = 'r', linestyle = 'dashed', label='$q_2$')
plt
.
xlabel
(
"
$\mu_\gamma$
"
)
# plt.axvline(x = q3_star, color = 'r', linestyle = 'dashed', label='$\gamma^*$')
# Plot Gamma Value that is closest to q3_star
plt
.
axvline
(
x
=
gammaClose
,
color
=
'
b
'
,
linestyle
=
'
dashed
'
,
label
=
'
$\gamma^*$
'
)
plt
.
axvspan
(
gamma_min
,
gammaClose
,
color
=
'
red
'
,
alpha
=
0.5
)
plt
.
axvspan
(
gammaClose
,
gamma_max
,
color
=
'
green
'
,
alpha
=
0.5
)
plt
.
xlabel
(
"
$\gamma$
"
)
plt
.
ylabel
(
"
angle
"
)
plt
.
ylabel
(
"
angle
"
)
plt
.
legend
()
plt
.
legend
()
plt
.
show
()
plt
.
show
()
#
# # ------------- RUN Matlab symbolic minimization program
# eng = matlab.engine.start_matlab()
# # s = eng.genpath(path + '/Matlab-Programs')
# s = eng.genpath(path)
# eng.addpath(s, nargout=0)
# # print('current Matlab folder:', eng.pwd(nargout=1))
# eng.cd('Matlab-Programs', nargout=0) #switch to Matlab-Programs folder
# # print('current Matlab folder:', eng.pwd(nargout=1))
# Inp = False
# print('Run symbolic Minimization...')
# G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp, nargout=4) #Name of program:symMinimization
# # G, angle, type, kappa = eng.symMinimization(Inp,Inp,Inp,Inp,path + "/outputs", nargout=4) #Optional: add Path
# G = np.asarray(G) #cast Matlab Outout to numpy array
#
# # --- print Output ---
# print('Minimizer G:')
# print(G)
# print('angle:', angle)
# print('type:', type )
# print('curvature:', kappa)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment