Newer
Older
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#if HAVE_DUNE_FOAMGRID
#include <dune/foamgrid/foamgrid.hh>
#else
#include <dune/grid/onedgrid.hh>
#endif
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/matrix-vector/genericvectortools.hh>
#include <dune/fufem/discretizationerror.hh>
#include <dune/fufem/dunepython.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/unitvector.hh>
#include <dune/gfe/realtuple.hh>

Sander, Oliver
committed
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/localprojectedfefunction.hh>
#include <dune/gfe/embeddedglobalgfefunction.hh>
// grid dimension
const int dim = 2;
const int dimworld = 2;
using namespace Dune;
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/** \brief Check whether given local coordinates are contained in the reference element
\todo This method exists in the Dune grid interface! But we need the eps.
*/
static bool checkInside(const Dune::GeometryType& type,
const Dune::FieldVector<double, dim> &loc,
double eps)
{
switch (type.dim())
{
case 0: // vertex
return false;
case 1: // line
return -eps <= loc[0] && loc[0] <= 1+eps;
case 2:
if (type.isSimplex()) {
return -eps <= loc[0] && -eps <= loc[1] && (loc[0]+loc[1])<=1+eps;
} else if (type.isCube()) {
return -eps <= loc[0] && loc[0] <= 1+eps
&& -eps <= loc[1] && loc[1] <= 1+eps;
} else
DUNE_THROW(Dune::GridError, "checkInside(): ERROR: Unknown type " << type << " found!");
case 3:
if (type.isSimplex()) {
return -eps <= loc[0] && -eps <= loc[1] && -eps <= loc[2]
&& (loc[0]+loc[1]+loc[2]) <= 1+eps;
} else if (type.isPyramid()) {
return -eps <= loc[0] && -eps <= loc[1] && -eps <= loc[2]
&& (loc[0]+loc[2]) <= 1+eps
&& (loc[1]+loc[2]) <= 1+eps;
} else if (type.isPrism()) {
return -eps <= loc[0] && -eps <= loc[1]
&& (loc[0]+loc[1])<= 1+eps
&& -eps <= loc[2] && loc[2] <= 1+eps;
} else if (type.isCube()) {
return -eps <= loc[0] && loc[0] <= 1+eps
&& -eps <= loc[1] && loc[1] <= 1+eps
&& -eps <= loc[2] && loc[2] <= 1+eps;
}else
DUNE_THROW(Dune::GridError, "checkInside(): ERROR: Unknown type " << type << " found!");
default:
DUNE_THROW(Dune::GridError, "checkInside(): ERROR: Unknown type " << type << " found!");
}
}
/** \param element An element of the source grid
*/
template <class GridType>
auto findSupportingElement(const GridType& sourceGrid,
const GridType& targetGrid,
typename GridType::template Codim<0>::Entity element,
FieldVector<double,dim> pos)
{
while (element.level() != 0)
{
pos = element.geometryInFather().global(pos);
element = element.father();
assert(checkInside(element.type(), pos, 1e-7));
}
//////////////////////////////////////////////////////////////////////
// Find the corresponding coarse grid element on the adaptive grid.
// This is a linear algorithm, but we expect the coarse grid to be small.
//////////////////////////////////////////////////////////////////////
LevelMultipleCodimMultipleGeomTypeMapper<GridType> sourceP0Mapper (sourceGrid, 0, mcmgElementLayout());
LevelMultipleCodimMultipleGeomTypeMapper<GridType> targetP0Mapper(targetGrid, 0, mcmgElementLayout());
const auto coarseIndex = sourceP0Mapper.index(element);
auto targetLevelView = targetGrid.levelGridView(0);
for (auto&& targetElement : elements(targetLevelView))
if (targetP0Mapper.index(targetElement) == coarseIndex)
{
element = std::move(targetElement);
break;
}
//////////////////////////////////////////////////////////////////////////
// Find a corresponding point (not necessarily vertex) on the leaf level
// of the adaptive grid.
//////////////////////////////////////////////////////////////////////////
while (!element.isLeaf())
{
FieldVector<double,dim> childPos;
assert(checkInside(element.type(), pos, 1e-7));
auto hIt = element.hbegin(element.level()+1);
auto hEndIt = element.hend(element.level()+1);
for (; hIt!=hEndIt; ++hIt)
{
childPos = hIt->geometryInFather().local(pos);
if (checkInside(hIt->type(), childPos, 1e-7))
break;
}
element = *hIt;
pos = childPos;
}
return std::tie(element, pos);
}
template <class GridView, int order, class TargetSpace>
void measureDiscreteEOC(const GridView gridView,
const GridView referenceGridView,
const ParameterTree& parameterSet)
{
typedef std::vector<TargetSpace> SolutionType;
//////////////////////////////////////////////////////////////////////////////////
// Construct the scalar function space bases corresponding to the GFE space
//////////////////////////////////////////////////////////////////////////////////
typedef Dune::Functions::LagrangeBasis<GridView, order> FEBasis;
FEBasis feBasis(gridView);
FEBasis referenceFEBasis(referenceGridView);
//typedef LocalGeodesicFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
//if (parameterSet["interpolationMethod"] != "geodesic")
// DUNE_THROW(Exception, "Inconsistent choice of interpolation method");
typedef GFE::LocalProjectedFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
if (parameterSet["interpolationMethod"] != "projected")
DUNE_THROW(Exception, "Inconsistent choice of interpolation method");

Sander, Oliver
committed
std::cout << "Using local interpolation: " << className<LocalInterpolationRule>() << std::endl;
//////////////////////////////////////////////////////////////////////////////////

Sander, Oliver
committed
// Read the data whose error is to be measured
//////////////////////////////////////////////////////////////////////////////////
// Input data
typedef BlockVector<typename TargetSpace::CoordinateType> EmbeddedVectorType;
EmbeddedVectorType embeddedX(feBasis.size());
std::ifstream inFile(parameterSet.get<std::string>("simulationData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("simulationData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("simulationData") << "' does not have the correct size!");
inFile.close();
SolutionType x(embeddedX.size());
for (size_t i=0; i<x.size(); i++)
x[i] = TargetSpace(embeddedX[i]);
// The numerical solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> numericalSolution(feBasis, x);
///////////////////////////////////////////////////////////////////////////
// Read the reference configuration
///////////////////////////////////////////////////////////////////////////
EmbeddedVectorType embeddedReferenceX(referenceFEBasis.size());
inFile.open(parameterSet.get<std::string>("referenceData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("referenceData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedReferenceX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("referenceData") << "' does not have the correct size!");
SolutionType referenceX(embeddedReferenceX.size());
for (size_t i=0; i<referenceX.size(); i++)
referenceX[i] = TargetSpace(embeddedReferenceX[i]);
// The reference solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> referenceSolution(referenceFEBasis, referenceX);
/////////////////////////////////////////////////////////////////
// Measure the discretization error
/////////////////////////////////////////////////////////////////

Sander, Oliver
committed
HierarchicSearch<typename GridView::Grid,typename GridView::IndexSet> hierarchicSearch(gridView.grid(), gridView.indexSet());
if (std::is_same<TargetSpace,RigidBodyMotion<double,3> >::value)
{
double deformationL2ErrorSquared = 0;
double orientationL2ErrorSquared = 0;
double deformationH1ErrorSquared = 0;
double orientationH1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
{
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
auto refValue = referenceSolution(rElement, qp.position());
auto numValue = numericalSolution(element, localPos);
auto diff = refValue - numValue;
assert(diff.size()==7);
// Compute error of the displacement degrees of freedom
for (int i=0; i<3; i++)
deformationL2ErrorSquared += integrationElement * qp.weight() * diff[i] * diff[i];
auto derDiff = referenceSolution.derivative(rElement, qp.position()) - numericalSolution.derivative(element, localPos);
for (int i=0; i<3; i++)
deformationH1ErrorSquared += integrationElement * qp.weight() * derDiff[i].two_norm2();
// Compute error of the orientation degrees of freedom
// We need to transform from quaternion coordinates to matrix coordinates first.
FieldMatrix<double,3,3> referenceValue, numericalValue;
Rotation<double,3> referenceRotation(std::array<double,4>{refValue[3], refValue[4], refValue[5], refValue[6]});
referenceRotation.matrix(referenceValue);
Rotation<double,3> numericalRotation(std::array<double,4>{numValue[3], numValue[4], numValue[5], numValue[6]});
numericalRotation.matrix(numericalValue);
auto orientationDiff = referenceValue - numericalValue;
orientationL2ErrorSquared += integrationElement * qp.weight() * orientationDiff.frobenius_norm2();
auto referenceDerQuat = referenceSolution.derivative(rElement, qp.position());
auto numericalDerQuat = numericalSolution.derivative(element, localPos);
// Transform to matrix coordinates
Tensor3<double,3,3,4> derivativeQuaternionToMatrixRef = Rotation<double,3>::derivativeOfQuaternionToMatrix(FieldVector<double,4>{refValue[3], refValue[4], refValue[5], refValue[6]});
Tensor3<double,3,3,4> derivativeQuaternionToMatrixNum = Rotation<double,3>::derivativeOfQuaternionToMatrix(FieldVector<double,4>{numValue[3], numValue[4], numValue[5], numValue[6]});
Tensor3<double,3,3,dim> refDerivative(0);
Tensor3<double,3,3,dim> numDerivative(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<dim; k++)
for (int l=0; l<4; l++)
{
refDerivative[i][j][k] += derivativeQuaternionToMatrixRef[i][j][l] * referenceDerQuat[3+l][k];
numDerivative[i][j][k] += derivativeQuaternionToMatrixNum[i][j][l] * numericalDerQuat[3+l][k];
}
auto derOrientationDiff = refDerivative - numDerivative; // compute the difference
orientationH1ErrorSquared += derOrientationDiff.frobenius_norm2() * qp.weight() * integrationElement;
}
}
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error deformation: " << std::sqrt(deformationL2ErrorSquared)
<< " "
<< "L^2 error orientation: " << std::sqrt(orientationL2ErrorSquared)
<< " "
<< "H^1 error deformation: " << std::sqrt(deformationH1ErrorSquared)
<< " "
<< "H^1 error orientation: " << std::sqrt(orientationH1ErrorSquared)
<< std::endl;
}
else if constexpr (std::is_same<TargetSpace,Rotation<double,3> >::value)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
{
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
{
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
FieldMatrix<double,3,3> referenceValue, numericalValue;
auto refValue = referenceSolution(rElement, qp.position());
Rotation<double,3> referenceRotation(refValue);
referenceRotation.matrix(referenceValue);
auto numValue = numericalSolution(element, localPos);
Rotation<double,3> numericalRotation(numValue);
numericalRotation.matrix(numericalValue);
auto diff = referenceValue - numericalValue;
l2ErrorSquared += integrationElement * qp.weight() * diff.frobenius_norm2();
auto referenceDerQuat = referenceSolution.derivative(rElement, qp.position());
auto numericalDerQuat = numericalSolution.derivative(element, localPos);
// Transform to matrix coordinates
Tensor3<double,3,3,4> derivativeQuaternionToMatrixRef = Rotation<double,3>::derivativeOfQuaternionToMatrix(refValue);
Tensor3<double,3,3,4> derivativeQuaternionToMatrixNum = Rotation<double,3>::derivativeOfQuaternionToMatrix(numValue);
Tensor3<double,3,3,dim> refDerivative(0);
Tensor3<double,3,3,dim> numDerivative(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<dim; k++)
for (int l=0; l<4; l++)
{
refDerivative[i][j][k] += derivativeQuaternionToMatrixRef[i][j][l] * referenceDerQuat[l][k];
numDerivative[i][j][k] += derivativeQuaternionToMatrixNum[i][j][l] * numericalDerQuat[l][k];
}
auto derDiff = refDerivative - numDerivative; // compute the difference
h1ErrorSquared += derDiff.frobenius_norm2() * qp.weight() * integrationElement;
}
}
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " "
<< "h^1 error: " << std::sqrt(h1ErrorSquared)
<< std::endl;
}
else
{
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());

Sander, Oliver
committed
// Given a point with local coordinates qp.position() on element rElement of the reference grid
// find the element and local coordinates on the grid of the numerical simulation
auto supportingElement = findSupportingElement(referenceGridView.grid(),
gridView.grid(),
rElement, qp.position());
auto element = std::get<0>(supportingElement);
auto localPos = std::get<1>(supportingElement);
auto diff = referenceSolution(rElement, qp.position()) - numericalSolution(element, localPos);
l2ErrorSquared += integrationElement * qp.weight() * diff.two_norm2();
auto derDiff = referenceSolution.derivative(rElement, qp.position()) - numericalSolution.derivative(element, localPos);
h1ErrorSquared += integrationElement * qp.weight() * derDiff.frobenius_norm2();
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " "
<< "h^1 error: " << std::sqrt(h1ErrorSquared)
}

Sander, Oliver
committed
template <class GridView, int order, class TargetSpace>
void measureAnalyticalEOC(const GridView gridView,
const ParameterTree& parameterSet)
{
typedef std::vector<TargetSpace> SolutionType;

Sander, Oliver
committed
//////////////////////////////////////////////////////////////////////////////////
// Construct the scalar function space bases corresponding to the GFE space
//////////////////////////////////////////////////////////////////////////////////

Sander, Oliver
committed
typedef Dune::Functions::LagrangeBasis<GridView, order> FEBasis;
//////////////////////////////////////////////////////////////////////////////////
// Read the data whose error is to be measured
//////////////////////////////////////////////////////////////////////////////////
typedef BlockVector<typename TargetSpace::CoordinateType> EmbeddedVectorType;
EmbeddedVectorType embeddedX(feBasis.size());
std::ifstream inFile(parameterSet.get<std::string>("simulationData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("simulationData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("simulationData") << "' does not have the correct size!");
SolutionType x(embeddedX.size());
for (size_t i=0; i<x.size(); i++)
x[i] = TargetSpace(embeddedX[i]);
/////////////////////////////////////////////////////////////////
// Measure the discretization error
/////////////////////////////////////////////////////////////////
// Read reference solution and its derivative into a PythonFunction
typedef VirtualDifferentiableFunction<FieldVector<double, dimworld>, typename TargetSpace::CoordinateType> FBase;
Python::Module module = Python::import(parameterSet.get<std::string>("referenceSolution"));
auto referenceSolution = module.get("fdf").toC<std::shared_ptr<FBase>>();
// The numerical solution, as a grid function
std::unique_ptr<VirtualGridViewFunction<GridView, typename TargetSpace::CoordinateType> > numericalSolution;
if (parameterSet["interpolationMethod"] == "geodesic")
numericalSolution = std::make_unique<GFE::EmbeddedGlobalGFEFunction<FEBasis,
LocalGeodesicFEFunction<dim, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace>,
TargetSpace> > (feBasis, x);
if (parameterSet["interpolationMethod"] == "projected")
numericalSolution = std::make_unique<GFE::EmbeddedGlobalGFEFunction<FEBasis,
GFE::LocalProjectedFEFunction<dim, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace>,
TargetSpace> > (feBasis, x);
// QuadratureRule for the integral of the L^2 error
QuadratureRuleKey quadKey(dim,6);
// Compute errors in the L2 norm and the h1 seminorm.
// SO(3)-valued maps need special treatment, because they are stored as quaternions,
// but the errors need to be computed in matrix space.
if constexpr (std::is_same<TargetSpace,Rotation<double,3> >::value)
{
constexpr int blocksize = TargetSpace::CoordinateType::dimension;
// The error to be computed
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
for (auto&& element : elements(gridView))
{
// Get quadrature formula
quadKey.setGeometryType(element.type());
const auto& quad = QuadratureRuleCache<double, dim>::rule(quadKey);
for (auto quadPoint : quad)
{
auto quadPos = quadPoint.position();
const auto integrationElement = element.geometry().integrationElement(quadPos);
const auto weight = quadPoint.weight();
// Evaluate function a
FieldVector<double,blocksize> numValue;
numericalSolution.get()->evaluateLocal(element, quadPos,numValue);
// Evaluate function b. If it is a grid function use that to speed up the evaluation
FieldVector<double,blocksize> refValue;
if (std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution))
std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution)->evaluateLocal(element,
quadPos,
refValue
);
else
referenceSolution->evaluate(element.geometry().global(quadPos), refValue);
// Get error in matrix space
Rotation<double,3> numRotation(numValue);
FieldMatrix<double,3,3> numValueMatrix;
numRotation.matrix(numValueMatrix);
Rotation<double,3> refRotation(refValue);
FieldMatrix<double,3,3> refValueMatrix;
refRotation.matrix(refValueMatrix);
// Evaluate derivatives in quaternion space
FieldMatrix<double,blocksize,dimworld> num_di;
FieldMatrix<double,blocksize,dimworld> ref_di;
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
if (dynamic_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >*>(numericalSolution.get()))
dynamic_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >*>(numericalSolution.get())->evaluateDerivativeLocal(element,
quadPos,
num_di);
else
numericalSolution->evaluateDerivative(element.geometry().global(quadPos), num_di);
if (std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution))
std::dynamic_pointer_cast<const VirtualGridViewFunction<GridView,FieldVector<double,blocksize> >>(referenceSolution)->evaluateDerivativeLocal(element,
quadPos,
ref_di);
else
referenceSolution->evaluateDerivative(element.geometry().global(quadPos), ref_di);
// Transform into matrix space
Tensor3<double,3,3,4> derivativeQuaternionToMatrixNum = Rotation<double,3>::derivativeOfQuaternionToMatrix(numValue);
Tensor3<double,3,3,4> derivativeQuaternionToMatrixRef = Rotation<double,3>::derivativeOfQuaternionToMatrix(refValue);
Tensor3<double,3,3,dim> numDerivative(0);
Tensor3<double,3,3,dim> refDerivative(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<dim; k++)
for (int l=0; l<blocksize; l++)
{
numDerivative[i][j][k] += derivativeQuaternionToMatrixNum[i][j][l] * num_di[l][k];
refDerivative[i][j][k] += derivativeQuaternionToMatrixRef[i][j][l] * ref_di[l][k];
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
}
// integrate error
l2ErrorSquared += (numValueMatrix - refValueMatrix).frobenius_norm2() * weight * integrationElement;
auto diff = numDerivative - refDerivative;
h1ErrorSquared += diff.frobenius_norm2() * weight * integrationElement;
}
}
std::cout << "elements: " << gridView.size(0)
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " ";
std::cout << "h^1 error: " << std::sqrt(h1ErrorSquared) << std::endl;
}
else
{
auto l2Error = DiscretizationError<GridView>::computeL2Error(numericalSolution.get(),
referenceSolution.get(),
quadKey);
auto h1Error = DiscretizationError<GridView>::computeH1HalfNormDifferenceSquared(gridView,
numericalSolution.get(),
referenceSolution.get(),
quadKey);
std::cout << "elements: " << gridView.size(0)
<< " "
<< "L^2 error: " << l2Error
<< " ";
std::cout << "h^1 error: " << std::sqrt(h1Error) << std::endl;
}
template <class GridType, class TargetSpace>
void measureEOC(const std::shared_ptr<GridType> grid,
const std::shared_ptr<GridType> referenceGrid,
const ParameterTree& parameterSet)
{
const int order = parameterSet.get<int>("order");
if (parameterSet.get<std::string>("discretizationErrorMode")=="discrete")
{
referenceGrid->globalRefine(parameterSet.get<int>("numReferenceLevels")-1);
switch (order)
{
case 1:
measureDiscreteEOC<typename GridType::LeafGridView,1,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
case 2:
measureDiscreteEOC<typename GridType::LeafGridView,2,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
case 3:
measureDiscreteEOC<typename GridType::LeafGridView,3,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
default:
DUNE_THROW(NotImplemented, "Order '" << order << "' is not implemented");
}
return; // Success
}
if (parameterSet.get<std::string>("discretizationErrorMode")=="analytical")
{
switch (order)
{
case 1:
measureAnalyticalEOC<typename GridType::LeafGridView,1,TargetSpace>(grid->leafGridView(), parameterSet);
break;
case 2:
measureAnalyticalEOC<typename GridType::LeafGridView,2,TargetSpace>(grid->leafGridView(), parameterSet);
break;
case 3:
measureAnalyticalEOC<typename GridType::LeafGridView,3,TargetSpace>(grid->leafGridView(), parameterSet);
break;
default:
DUNE_THROW(NotImplemented, "Order '" << order << "' is not implemented");
}
return; // Success
DUNE_THROW(NotImplemented, "Unknown discretization error mode encountered!");
int main (int argc, char *argv[]) try
{
// Start Python interpreter
Python::start();
Python::Reference main = Python::import("__main__");
Python::run("import math");
Python::runStream()
<< std::endl << "import sys"
<< std::endl << "sys.path.append('/home/sander/dune/dune-gfe/problems')"
<< std::endl;
// parse data file
ParameterTree parameterSet;
if (argc < 2)
DUNE_THROW(Exception, "Usage: ./compute-disc-error <parameter file>");
ParameterTreeParser::readINITree(argv[1], parameterSet);
ParameterTreeParser::readOptions(argc, argv, parameterSet);
// Print all parameters, to have them in the log file
parameterSet.report();
/////////////////////////////////////////
// Create the grids
/////////////////////////////////////////
#if HAVE_DUNE_FOAMGRID
typedef std::conditional<dim==1 or dim!=dimworld,FoamGrid<dim,dimworld>,UGGrid<dim> >::type GridType;
#else
static_assert(dim==dimworld, "You need to have dune-foamgrid installed for dim != dimworld!");
typedef std::conditional<dim==1,OneDGrid,UGGrid<dim> >::type GridType;
#endif
const int numLevels = parameterSet.get<int>("numLevels");
shared_ptr<GridType> grid, referenceGrid;
FieldVector<double,dimworld> lower(0), upper(1);
std::string structuredGridType = parameterSet["structuredGrid"];
if (structuredGridType == "sphere")
{
if constexpr (dimworld==3)
{
grid = makeSphereOnOctahedron<GridType>({0,0,0},1);
referenceGrid = makeSphereOnOctahedron<GridType>({0,0,0},1);
} else
DUNE_THROW(Exception, "Dimworld must be 3 to create a sphere grid!");
}
else if (structuredGridType == "simplex" || structuredGridType == "cube")
{
lower = parameterSet.get<FieldVector<double,dimworld> >("lower");
upper = parameterSet.get<FieldVector<double,dimworld> >("upper");
auto elements = parameterSet.get<std::array<unsigned int,dim> >("elements");
if (structuredGridType == "simplex")
{
grid = StructuredGridFactory<GridType>::createSimplexGrid(lower, upper, elements);
referenceGrid = StructuredGridFactory<GridType>::createSimplexGrid(lower, upper, elements);
} else if (structuredGridType == "cube")
{
grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
referenceGrid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
} else
DUNE_THROW(Exception, "Unknown structured grid type '" << structuredGridType << "' found!");
}
else
{
std::string path = parameterSet.get<std::string>("path");
std::string gridFile = parameterSet.get<std::string>("gridFile");
grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
referenceGrid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
}
grid->globalRefine(numLevels-1);
// Do the actual measurement
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
const int targetDim = parameterSet.get<int>("targetDim");
const std::string targetSpace = parameterSet.get<std::string>("targetSpace");
switch (targetDim)
{
case 1:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,1> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,1> >(grid,
referenceGrid,
parameterSet);
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
case 2:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,2> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,2> >(grid,
referenceGrid,
parameterSet);
#if 0
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,2> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,2> >(grid,
referenceGrid,
parameterSet);
#endif
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
case 3:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,3> >(grid,
referenceGrid,
parameterSet);
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
case 4:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,4> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,4> >(grid,
referenceGrid,
parameterSet);
#if 0
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,4> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,4> >(grid,
referenceGrid,
parameterSet);
#endif
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
default:
DUNE_THROW(NotImplemented, "Target dimension '" << targetDim << "' is not implemented");
}
{
std::cout << e << std::endl;
return 1;
}