Skip to content
Snippets Groups Projects
rotationtest.cc 8.95 KiB
Newer Older
  • Learn to ignore specific revisions
  • Oliver Sander's avatar
    Oliver Sander committed
    #include <config.h>
    
    #include <iostream>
    
    #include <array>
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    #include <dune/common/fmatrix.hh>
    
    
    #include <dune/gfe/rotation.hh>
    
    #include "valuefactory.hh"
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    using namespace Dune;
    
    
        std::array<FieldVector<double,3>, 125> v;
    
        int ct = 0;
        double eps = 1e-4;
    
        for (int i=-2; i<3; i++)
            for (int j=-2; j<3; j++)
                for (int k=-2; k<3; k++) {
                    v[ct][0] = i;
                    v[ct][1] = j;
                    v[ct][2] = k;
                    ct++;
                }
    
        for (size_t i=0; i<v.size(); i++) {
    
            // Compute FD approximation of second derivative of exp
    
            std::array<Dune::FieldMatrix<double,3,3>, 4> fdDDExp;
    
    
            for (int j=0; j<3; j++) {
    
                for (int k=0; k<3; k++) {
    
                    if (j==k) {
    
                        SkewMatrix<double,3> forward(v[i]);
                        forward.axial()[j] += eps;
                        Rotation<double,3> forwardQ  = Rotation<double,3>::exp(forward);
    
                        SkewMatrix<double,3> center(v[i]);
                        Rotation<double,3> centerQ   = Rotation<double,3>::exp(center);
    
                        SkewMatrix<double,3> backward(v[i]);
                        backward.axial()[j] -= eps;
                        Rotation<double,3> backwardQ = Rotation<double,3>::exp(backward);
    
    
                        for (int l=0; l<4; l++)
                            fdDDExp[l][j][j] = (forwardQ[l] - 2*centerQ[l] + backwardQ[l]) / (eps*eps);
    
    
                    } else {
    
                        SkewMatrix<double,3> ffV(v[i]);      ffV.axial()[j] += eps;     ffV.axial()[k] += eps;
                        SkewMatrix<double,3> fbV(v[i]);      fbV.axial()[j] += eps;     fbV.axial()[k] -= eps;
                        SkewMatrix<double,3> bfV(v[i]);      bfV.axial()[j] -= eps;     bfV.axial()[k] += eps;
                        SkewMatrix<double,3> bbV(v[i]);      bbV.axial()[j] -= eps;     bbV.axial()[k] -= eps;
    
    
                        Rotation<double,3> forwardForwardQ = Rotation<double,3>::exp(ffV);
                        Rotation<double,3> forwardBackwardQ = Rotation<double,3>::exp(fbV);
                        Rotation<double,3> backwardForwardQ = Rotation<double,3>::exp(bfV);
                        Rotation<double,3> backwardBackwardQ = Rotation<double,3>::exp(bbV);
    
    
                        for (int l=0; l<4; l++)
                            fdDDExp[l][j][k] = (forwardForwardQ[l] + backwardBackwardQ[l]
                                                - forwardBackwardQ[l] - backwardForwardQ[l]) / (4*eps*eps);
    
                    }
    
                }
    
            }
    
            // Compute analytical second derivative of exp
    
            std::array<Dune::FieldMatrix<double,3,3>, 4> ddExp;
    
            Rotation<double,3>::DDexp(v[i], ddExp);
    
            for (int m=0; m<4; m++)
                for (int j=0; j<3; j++)
                    for (int k=0; k<3; k++)
                        if ( std::abs(fdDDExp[m][j][k] - ddExp[m][j][k]) > eps) {
    
                            std::cout << "Error at v = " << v[i]
                                      << "[" << m << ", " << j << ", " << k << "] "
    
                                      << "    fd: " << fdDDExp[m][j][k]
                                      << "    analytical: " << ddExp[m][j][k] << std::endl;
                        }
        }
    }
    
    
    void testRotation(Rotation<double,3> q)
    
    Oliver Sander's avatar
    Oliver Sander committed
    {
        // Make sure it really is a unit quaternion
        q.normalize();
    
        assert(std::abs(1-q.two_norm()) < 1e-12);
    
        // Turn it into a matrix
        FieldMatrix<double,3,3> matrix;
        q.matrix(matrix);
    
        // make sure it is an orthogonal matrix
        if (std::abs(1-matrix.determinant()) > 1e-12 )
            DUNE_THROW(Exception, "Expected determinant 1, but the computed value is " << matrix.determinant());
    
        assert( std::abs( matrix[0]*matrix[1] ) < 1e-12 );
        assert( std::abs( matrix[0]*matrix[2] ) < 1e-12 );
        assert( std::abs( matrix[1]*matrix[2] ) < 1e-12 );
    
        // Turn the matrix back into a quaternion, and check whether it is the same one
        // Since the quaternions form a double covering of SO(3), we may either get q back
        // or -q.  We have to check both.
    
        Rotation<double,3> newQ;
    
    Oliver Sander's avatar
    Oliver Sander committed
        newQ.set(matrix);
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        diff -= q;
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        sum += q;
    
        if (diff.infinity_norm() > 1e-12 && sum.infinity_norm() > 1e-12)
            DUNE_THROW(Exception, "Backtransformation failed for " << q << ". ");
    
        // //////////////////////////////////////////////////////
        //   Check the director vectors
        // //////////////////////////////////////////////////////
    
        for (int i=0; i<3; i++)
            for (int j=0; j<3; j++)
                assert( std::abs(matrix[i][j] - q.director(j)[i]) < 1e-12 );
    
        // //////////////////////////////////////////////////////
        //   Check multiplication with another unit quaternion
        // //////////////////////////////////////////////////////
    
        for (int i=-2; i<2; i++)
            for (int j=-2; j<2; j++)
                for (int k=-2; k<2; k++)
                    for (int l=-2; l<2; l++)
                        if (i!=0 || j!=0 || k!=0 || l!=0) {
    
    
                            Rotation<double,3> q2(Quaternion<double>(i,j,k,l));
    
    Oliver Sander's avatar
    Oliver Sander committed
                            q2.normalize();
    
                            // set up corresponding rotation matrix
                            FieldMatrix<double,3,3> q2Matrix;
                            q2.matrix(q2Matrix);
    
                            // q2 = q2 * q   Quaternion multiplication
                            q2 = q2.mult(q);
    
                            // q2 = q2 * q   Matrix multiplication
                            q2Matrix.rightmultiply(matrix);
    
                            FieldMatrix<double,3,3> productMatrix;
                            q2.matrix(productMatrix);
    
                            // Make sure we got identical results
                            productMatrix -= q2Matrix;
                            assert(productMatrix.infinity_norm() < 1e-10);
    
                        }
    
        // ////////////////////////////////////////////////////////////////
        //   Check the operators 'B' that create an orthonormal basis of H
        // ////////////////////////////////////////////////////////////////
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        Bq[0] = q;
        Bq[1] = q.B(0);
        Bq[2] = q.B(1);
        Bq[3] = q.B(2);
    
        for (int i=0; i<4; i++) {
    
            for (int j=0; j<4; j++) {
    
                double prod = Bq[i]*Bq[j];
                assert( std::abs( prod - (i==j) ) < 1e-6 );
    
            }
    
        }
    
    
        //////////////////////////////////////////////////////////////////////
        //  Check whether the derivativeOfMatrixToQuaternion methods works
        //////////////////////////////////////////////////////////////////////
    
        Tensor3<double,4,3,3> derivative = Rotation<double,3>::derivativeOfMatrixToQuaternion(matrix);
    
        const double eps = 1e-8;
        Tensor3<double,4,3,3> derivativeFD;
    
        for (size_t i=0; i<3; i++)
        {
          for (size_t j=0; j<3; j++)
          {
            auto forwardMatrix = matrix;
            forwardMatrix[i][j] += eps;
            auto backwardMatrix = matrix;
            backwardMatrix[i][j] -= eps;
    
            Rotation<double,3> forwardRotation, backwardRotation;
            forwardRotation.set(forwardMatrix);
            backwardRotation.set(backwardMatrix);
    
            for (size_t k=0; k<4; k++)
              derivativeFD[k][i][j] = (forwardRotation.globalCoordinates()[k] - backwardRotation.globalCoordinates()[k]) / (2*eps);
    
          }
        }
    
        if ((derivative - derivativeFD).infinity_norm() > 1e-6)
        {
          std::cout << "At matrix:\n" << matrix << std::endl;
    
          std::cout << "Derivative of matrix to quaternion map does not match its FD approximation" << std::endl;
          std::cout << "Analytical derivative:" << std::endl;
          std::cout << derivative << std::endl;
          std::cout << "Finite difference approximation" << std::endl;
          std::cout << derivativeFD << std::endl;
          abort();
        }
    
    Oliver Sander's avatar
    Oliver Sander committed
    }
    
    
    //! test interpolation between two rotations
    bool testInterpolation(const Rotation<double, 3>& a, const Rotation<double, 3>& b) {
    
        // Compute difference on T_a SO(3)
        Rotation<double, 3> newB = Rotation<double, 3>::interpolate(a, b, 1.0);
    
        // Compare matrix representation
        FieldMatrix<double, 3, 3> matB;
        b.matrix(matB);
    
        FieldMatrix<double, 3, 3> matNewB;
        newB.matrix(matNewB);
    
        matNewB -= matB;
        if (matNewB.infinity_norm() > 1e-14)
            std::cout << " Interpolation failed with difference " << matNewB.infinity_norm()  << std::endl;
    
        return (matNewB.infinity_norm() < 1e-14);
    }
    
    
    Oliver Sander's avatar
    Oliver Sander committed
    int main (int argc, char *argv[]) try
    {
    
        std::vector<Rotation<double,3> > testPoints;
        ValueFactory<Rotation<double,3> >::get(testPoints);
    
        int nTestPoints = testPoints.size();
    
        // Test each element in the list
        for (int i=0; i<nTestPoints; i++)
            testRotation(testPoints[i]);
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    
        bool passed(true);
        // Test interpolating between pairs of rotations
        for (int i=0; i<nTestPoints-1; i++)
            passed = passed and testInterpolation(testPoints[i], testPoints[i+1]);
    
    
        // //////////////////////////////////////////////
        //   Test second derivative of exp
        // //////////////////////////////////////////////
        testDDExp();
    
    
     } catch (Exception& e) {
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    
        std::cout << e.what() << std::endl;
    
    Oliver Sander's avatar
    Oliver Sander committed
    
     }