Newer
Older
#include <config.h>
#include <iostream>
#include <dune/common/fmatrix.hh>
#include "valuefactory.hh"
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
void testDDExp()
{
array<FieldVector<double,3>, 125> v;
int ct = 0;
double eps = 1e-4;
for (int i=-2; i<3; i++)
for (int j=-2; j<3; j++)
for (int k=-2; k<3; k++) {
v[ct][0] = i;
v[ct][1] = j;
v[ct][2] = k;
ct++;
}
for (size_t i=0; i<v.size(); i++) {
// Compute FD approximation of second derivative of exp
Dune::array<Dune::FieldMatrix<double,3,3>, 4> fdDDExp;
for (int j=0; j<3; j++) {
for (int k=0; k<3; k++) {
if (j==k) {
Quaternion<double> forwardQ = Quaternion<double>::exp(v[i][0] + (j==0)*eps,
v[i][1] + (j==1)*eps,
v[i][2] + (j==2)*eps);
Quaternion<double> centerQ = Quaternion<double>::exp(v[i][0],v[i][1],v[i][2]);
Quaternion<double> backwardQ = Quaternion<double>::exp(v[i][0] - (j==0)*eps,
v[i][1] - (j==1)*eps,
v[i][2] - (j==2)*eps);
for (int l=0; l<4; l++)
fdDDExp[l][j][j] = (forwardQ[l] - 2*centerQ[l] + backwardQ[l]) / (eps*eps);
} else {
SkewMatrix<double,3> ffV(v[i]); ffV.axial()[j] += eps; ffV.axial()[k] += eps;
SkewMatrix<double,3> fbV(v[i]); fbV.axial()[j] += eps; fbV.axial()[k] -= eps;
SkewMatrix<double,3> bfV(v[i]); bfV.axial()[j] -= eps; bfV.axial()[k] += eps;
SkewMatrix<double,3> bbV(v[i]); bbV.axial()[j] -= eps; bbV.axial()[k] -= eps;
Quaternion<double> forwardForwardQ = Quaternion<double>::exp(ffV);
Quaternion<double> forwardBackwardQ = Quaternion<double>::exp(fbV);
Quaternion<double> backwardForwardQ = Quaternion<double>::exp(bfV);
Quaternion<double> backwardBackwardQ = Quaternion<double>::exp(bbV);
for (int l=0; l<4; l++)
fdDDExp[l][j][k] = (forwardForwardQ[l] + backwardBackwardQ[l]
- forwardBackwardQ[l] - backwardForwardQ[l]) / (4*eps*eps);
}
}
}
// Compute analytical second derivative of exp
Dune::array<Dune::FieldMatrix<double,3,3>, 4> ddExp;
Rotation<double,3>::DDexp(v[i], ddExp);
for (int m=0; m<4; m++)
for (int j=0; j<3; j++)
for (int k=0; k<3; k++)
if ( std::abs(fdDDExp[m][j][k] - ddExp[m][j][k]) > eps) {
std::cout << "Error at v = " << v[i]
<< "[" << m << ", " << j << ", " << k << "] "
<< " fd: " << fdDDExp[m][j][k]
<< " analytical: " << ddExp[m][j][k] << std::endl;
}
}
}
void testDerivativeOfInterpolatedPosition()
{
array<Quaternion<double>, 6> q;
FieldVector<double,3> xAxis(0); xAxis[0] = 1;
FieldVector<double,3> yAxis(0); yAxis[1] = 1;
FieldVector<double,3> zAxis(0); zAxis[2] = 1;
q[0] = Quaternion<double>(xAxis, 0);
q[1] = Quaternion<double>(xAxis, M_PI/2);
q[2] = Quaternion<double>(yAxis, 0);
q[3] = Quaternion<double>(yAxis, M_PI/2);
q[4] = Quaternion<double>(zAxis, 0);
q[5] = Quaternion<double>(zAxis, M_PI/2);
double eps = 1e-7;
for (int i=0; i<6; i++) {
for (int j=0; j<6; j++) {
for (int k=0; k<7; k++) {
double s = k/6.0;
array<Quaternion<double>,6> fdGrad;
// ///////////////////////////////////////////////////////////
// First: test the interpolated position
// ///////////////////////////////////////////////////////////
fdGrad[0] = Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(eps,0,0)), q[j], s);
fdGrad[0] -= Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(-eps,0,0)), q[j], s);
fdGrad[0] /= 2*eps;
fdGrad[1] = Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,eps,0)), q[j], s);
fdGrad[1] -= Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,-eps,0)), q[j], s);
fdGrad[1] /= 2*eps;
fdGrad[2] = Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,0,eps)), q[j], s);
fdGrad[2] -= Rotation<double,3>::interpolate(q[i].mult(Quaternion<double>::exp(0,0,-eps)), q[j], s);
fdGrad[2] /= 2*eps;
fdGrad[3] = Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(eps,0,0)), s);
fdGrad[3] -= Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(-eps,0,0)), s);
fdGrad[3] /= 2*eps;
fdGrad[4] = Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,eps,0)), s);
fdGrad[4] -= Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,-eps,0)), s);
fdGrad[4] /= 2*eps;
fdGrad[5] = Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,0,eps)), s);
fdGrad[5] -= Rotation<double,3>::interpolate(q[i], q[j].mult(Quaternion<double>::exp(0,0,-eps)), s);
fdGrad[5] /= 2*eps;
// Compute analytical gradient
array<Quaternion<double>,6> grad;
RodLocalStiffness<OneDGrid,double>::interpolationDerivative(q[i], q[j], s, grad);
for (int l=0; l<6; l++) {
Quaternion<double> diff = fdGrad[l];
diff -= grad[l];
if (diff.two_norm() > 1e-6) {
std::cout << "Error in position " << l << ": fd: " << fdGrad[l]
<< " analytical: " << grad[l] << std::endl;
}
}
// ///////////////////////////////////////////////////////////
// Second: test the interpolated velocity vector
// ///////////////////////////////////////////////////////////
for (int l=1; l<7; l++) {
double intervalLength = l/(double(3));
fdGrad[0] = Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(eps,0,0)),
q[j], s, intervalLength);
fdGrad[0] -= Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(-eps,0,0)),
q[j], s, intervalLength);
fdGrad[0] /= 2*eps;
fdGrad[1] = Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,eps,0)),
q[j], s, intervalLength);
fdGrad[1] -= Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,-eps,0)),
q[j], s, intervalLength);
fdGrad[1] /= 2*eps;
fdGrad[2] = Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,0,eps)),
q[j], s, intervalLength);
fdGrad[2] -= Rotation<double,3>::interpolateDerivative(q[i].mult(Quaternion<double>::exp(0,0,-eps)),
q[j], s, intervalLength);
fdGrad[2] /= 2*eps;
fdGrad[3] = Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(eps,0,0)), s, intervalLength);
fdGrad[3] -= Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(-eps,0,0)), s, intervalLength);
fdGrad[3] /= 2*eps;
fdGrad[4] = Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,eps,0)), s, intervalLength);
fdGrad[4] -= Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,-eps,0)), s, intervalLength);
fdGrad[4] /= 2*eps;
fdGrad[5] = Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,0,eps)), s, intervalLength);
fdGrad[5] -= Rotation<double,3>::interpolateDerivative(q[i], q[j].mult(Quaternion<double>::exp(0,0,-eps)), s, intervalLength);
fdGrad[5] /= 2*eps;
// Compute analytical velocity vector gradient
RodLocalStiffness<OneDGrid,double>::interpolationVelocityDerivative(q[i], q[j], s, intervalLength, grad);
for (int m=0; m<6; m++) {
Quaternion<double> diff = fdGrad[m];
diff -= grad[m];
if (diff.two_norm() > 1e-6) {
std::cout << "Error in velocity " << m
<< ": s = " << s << " of (" << intervalLength << ")"
<< " fd: " << fdGrad[m] << " analytical: " << grad[m] << std::endl;
}
}
}
}
}
}
}
void testRotation(Rotation<double,3> q)
{
// Make sure it really is a unit quaternion
q.normalize();
assert(std::abs(1-q.two_norm()) < 1e-12);
// Turn it into a matrix
FieldMatrix<double,3,3> matrix;
q.matrix(matrix);
// make sure it is an orthogonal matrix
if (std::abs(1-matrix.determinant()) > 1e-12 )
DUNE_THROW(Exception, "Expected determinant 1, but the computed value is " << matrix.determinant());
assert( std::abs( matrix[0]*matrix[1] ) < 1e-12 );
assert( std::abs( matrix[0]*matrix[2] ) < 1e-12 );
assert( std::abs( matrix[1]*matrix[2] ) < 1e-12 );
// Turn the matrix back into a quaternion, and check whether it is the same one
// Since the quaternions form a double covering of SO(3), we may either get q back
// or -q. We have to check both.
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
newQ.set(matrix);
Quaternion<double> diff = newQ;
diff -= q;
Quaternion<double> sum = newQ;
sum += q;
if (diff.infinity_norm() > 1e-12 && sum.infinity_norm() > 1e-12)
DUNE_THROW(Exception, "Backtransformation failed for " << q << ". ");
// //////////////////////////////////////////////////////
// Check the director vectors
// //////////////////////////////////////////////////////
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
assert( std::abs(matrix[i][j] - q.director(j)[i]) < 1e-12 );
// //////////////////////////////////////////////////////
// Check multiplication with another unit quaternion
// //////////////////////////////////////////////////////
for (int i=-2; i<2; i++)
for (int j=-2; j<2; j++)
for (int k=-2; k<2; k++)
for (int l=-2; l<2; l++)
if (i!=0 || j!=0 || k!=0 || l!=0) {
Rotation<double,3> q2(Quaternion<double>(i,j,k,l));
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
q2.normalize();
// set up corresponding rotation matrix
FieldMatrix<double,3,3> q2Matrix;
q2.matrix(q2Matrix);
// q2 = q2 * q Quaternion multiplication
q2 = q2.mult(q);
// q2 = q2 * q Matrix multiplication
q2Matrix.rightmultiply(matrix);
FieldMatrix<double,3,3> productMatrix;
q2.matrix(productMatrix);
// Make sure we got identical results
productMatrix -= q2Matrix;
assert(productMatrix.infinity_norm() < 1e-10);
}
// ////////////////////////////////////////////////////////////////
// Check the operators 'B' that create an orthonormal basis of H
// ////////////////////////////////////////////////////////////////
Quaternion<double> Bq[4];
Bq[0] = q;
Bq[1] = q.B(0);
Bq[2] = q.B(1);
Bq[3] = q.B(2);
for (int i=0; i<4; i++) {
for (int j=0; j<4; j++) {
double prod = Bq[i]*Bq[j];
assert( std::abs( prod - (i==j) ) < 1e-6 );
}
}
}
int main (int argc, char *argv[]) try
{
std::vector<Rotation<double,3> > testPoints;
ValueFactory<Rotation<double,3> >::get(testPoints);
int nTestPoints = testPoints.size();
// Test each element in the list
for (int i=0; i<nTestPoints; i++)
testRotation(testPoints[i]);
// //////////////////////////////////////////////
// Test second derivative of exp
// //////////////////////////////////////////////
testDDExp();
// //////////////////////////////////////////////
// Test derivative of interpolated position
// //////////////////////////////////////////////
testDerivativeOfInterpolatedPosition();
} catch (Exception e) {
std::cout << e << std::endl;
}